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ABSTRACT

For video streaming services, a bit rate ladder is generated by encoding each video signal at various bit rates
and associated spatial resolutions. For a bit rate ladder that maximizes the subjective quality at a minimum
bit rate, it was found that the VMAF of the highest provided quality should not exceed 95, which is on average
associated with the same subjective quality as the original signal. Second, all VMAF differences between adjacent
renditions should ideally be not greater than 2 as this guarantees indistinguishable subjective quality on average.
The generation of a bit rate ladder fulfilling these constraints faces the difficulties that (i) today’s encoders cannot
be instructed to achieve a certain VMAF and (ii) a certain VMAF can be achieved by various combinations of
bit rate and spatial resolution. These difficulties result in a content-dependent multidimensional solution space
for generating the quality-based bit rate ladder at a minimum bit rate. In this paper, an algorithm is presented
which can generate such a bit rate ladder. The algorithm determines the VMAF of nine initial encodings of the
signal. Using a specifically designed and trained neural network, the VMAF of 5805 combinations of bit rate and
spatial resolution is predicted from the nine initial ones. Based on these predictions, a bit rate ladder is extracted
and further refined until all VMAF constraints are fulfilled. Experiments show that the algorithm requires 3.6
encodings per provided VMAF on average. A VMAF of 95.07 is achieved on average for the highest provided
quality and a VMAF difference between adjacent renditions of 1.92.
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1. INTRODUCTION

The use of over-the-top media services applying adaptive bit rate (ABR) video streaming is continuously growing.
Hereby, digital video signals are encoded at various bit rates and spatial resolutions, resulting in associated
qualities. An encoded video signal with a certain bit rate and spatial resolution is denoted as a rendition. Each
rendition is associated with a quality. The set of all renditions is denoted as a bit rate ladder. Content Delivery
Networks (CDN) are used to provide the encoded video signals to the end-user devices. Depending on the
capabilities of the end-user device and the individual transmission rate of the internet connection, a rendition is
typically selected with a maximum bit rate that is equal to or lower than the individual transmission rate. For
display purposes, each end user device scales the decoded video signal to its display resolution.

A basic generation method is the ”one-size-fits-all” fixed bit rate ladder, as described by Aaron et al.1 or in
Apple’s specification for creating HTTP Live Streaming (HLS).2 Here, a fixed predefined set of combinations of
bit rates and spatial resolutions is used for each video content, regardless of the content complexity. Using fixed
predefined combinations for all video content results in a lower quality for high complexity video content than
for low complexity video content. As the quality varies at a given bit rate, a high user experience cannot be
guaranteed by such a bit rate ladder.

Nowadays, there are content-dependent bit rate ladder designs that consider the content complexity, in par-
ticular per-title,1 and shot-based3 encodings. Per-title encoding refers to a bit rate ladder optimization for the
entire video content. Shot-based encoding, also known as per-scene encoding, refers to a more granular optimiza-
tion of bit rate ladders for each shot of each video content. A further aspect that is typically considered in the
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generation process is the storage costs. To limit them, the number of renditions in a bit rate ladder is typically
limited to around 5 to 15.1,2, 4 Reznik et al.4 propose a variable number of renditions for the bit rate ladder
depending on the complexity of the video content.

There are further content-dependent approaches, such as Katsenou et al.,5 which introduced an approach for
estimating a bit rate ladder based on the objective metric Video Multi-Method Assessment Fusion (VMAF).6

They consider a fixed bit rate range for the ladder and that the next higher bit rate is twice the previous bit rate.
They also monitor the slope of the bit rate VMAF curve; when the derivative falls below a certain threshold,
no further higher quality is considered. This varies the length of the bit rate ladder. MiPSO7 uses a scene-
based optimization method that optimizes the bit rate ladder for the maximum possible quality or the minimum
possible bit rate. Each scene is encoded with a fixed set of combinations of bit rates and spatial resolutions. The
combinations that are on the constructed convex hull are selected as renditions. FAUST8 predicts an optimized
bit rate ladder for each scene using an artificial neural network. Hereby, rendition qualities are selected in a
specified peak signal-to-noise ratio (PSNR) range with equidistant PSNR values.

One major drawback of these content-dependent bit rate ladder designs is that the renditions are still primarily
selected based on the bit rate, as in the case of Katsenou et al.5 or MiPSO.7 Whereas FAUST8 selects the
renditions based on the PSNR metric, which has been shown to have a lower correlation with subjective quality
than VMAF.9 In addition, there are several commercial solutions, such as from Bitmovin,10 CAMBRIA,11

MUX,12 and Brightcove,13 for which the bit rate ladder generation has not been published in detail.

The key aspect of the user experience is the subjective quality. To consider this aspect, Kah et al.14 developed
theoretical foundations for a quality-based bit rate ladder design. The renditions resulting from this design
maximize subjective quality under the constraint of minimal bit rate. To judge the subjective quality of the
encoded video signal, Kah et al.14 use VMAF. The VMAF score ranges from 0 to 100, where 0 corresponds
to low and 100 to high subjective quality. The VMAF score of a video signal is computed as the average of
the VMAF score of each frame. Kah et al.14 put the focus on the determination of the theoretical VMAF
constraints. The authors determined the highest VMAF and the lowest VMAF to be provided with the bit rate
ladder, as well as the maximum VMAF difference between each two bit rate-wise adjacent renditions.

The generation of a bit rate ladder fulfilling these constraints faces the major difficulties as explained in the
following. Today’s encoders cannot be instructed to achieve a certain VMAF score. However, they can be
instructed to reach a certain bit rate via the rate control. Figure 1 shows a block diagram of the generation of a
rendition. First, the video signal to be coded is scaled to the desired spatial resolution Scoded. Second, the scaled
video signal is encoded by the video encoder using a bit rate target RRC , which is passed to the rate control of the
video encoder. Usually, this rate control bit rate is not exactly reached by the encoder and the resulting bit rate
Rcoded differs from the desired bit rate RRC . Furthermore, the VMAF can only be determined after decoding
the encoded video signal and after scaling it back to the original spatial resolution. Another major difficulty
is the fact that a video signal with a certain VMAF can be generated by various combinations of bit rate and
spatial resolution. These difficulties result in a multidimensional solution space for generating the quality-based
bit rate ladder at minimum storage costs. Additionally, this solution space varies with the complexity of the
video content.

Input video signal Scaled

video signal
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Spatial resolution Scoded
Bit rate target RRC

passed to the rate control

Video encoder

(e.g., H.264/AVC,
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Figure 1. Block diagram of the generation of a encoded scaled video signal.

In this paper, an algorithm is presented for a bit rate ladder generation meeting all theoretical VMAF con-
straints given by Kah et al.14 with a limited effort. The key component of this algorithm is a predictor, which can



predict the VMAF of a large number of combinations of bit rates and spatial resolutions. Using these predictions
the renditions are effectively selected.

The remaining paper is structured as follows. Section 2 summarizes the quality-based bit rate ladder design
of Kah et al.,14 which forms the theoretical background of this work. All details of the presented algorithm are
described in Section 3. The evaluation results are presented in Section 4 and Section 5 concludes the paper.

2. A QUALITY-BASED BIT RATE LADDER DESIGN

The quality-based bit rate ladder design of Kah et al.14 consists of K renditions, each of a certain VMAF score
VMAF1, . . . , V MAFk, . . . , V MAFK , see Figure 2. The bit rates of the renditions are R1, . . . , Rk, . . . , RK . The
K VMAF scores are derived from the three quality parameters, which were determined by subjective tests using
a 4KTV, as described in the following. The first parameter is the maximum provided quality VMAFK . For
a maximum user experience, it should ideally be set to the lowest possible VMAF, for which a video signal
is subjectively indistinguishable from the original video signal. This minimizes the bit rate, and thus storage
and network costs, while still ensuring optimal subjective quality. Based on Kah et al.,14 this VMAF score is
determined to be 95. The second parameter is the minimum provided quality VMAF1. As stated by Kah et al.14

it is advised to be set to the lowest VMAF score for which video is still acceptable for watching by the users
depending on the situation of permanent viewing or temporary impairment, e.g. of approx. 30 seconds. Such
a strategy minimizes encoding and storage costs by avoiding renditions not being watched by users due to
unacceptable subjective quality. To achieve an acceptance rate larger than 90% for free video streaming services
or larger than 70% for paid video streaming services, this VMAF score is set to 79, according to Kah et al.14
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Figure 2. Bit rates R1, . . . , RK and associated VMAF scores VMAF1, . . . , V MAFK of a bit rate ladder limiting the
quality difference to ∆VMAFmax.

The third parameter of the design is the maximum quality difference between two neighboring renditions k
and k + 1, which can be expressed as ∆VMAF = VMAFk+1 − VMAFk. It should ideally be set small enough
such that the subjective quality of the video signal is the same for each pair of neighboring renditions k and
k+1 in average. This way, any potential quality difference due to not fully exploiting the available transmission



rate T of the user’s internet connection can be avoided. In addition, switching between neighboring renditions
remains subjectively unnoticeable. Thus, the temporal consistency of the video playback is maximized. Based on
Kah et al.,14 this difference is determined to be ∆VMAFmax = 2. This results in a quality-based bit rate ladder,
which ideally provides each video signal in 9 qualities associated with the VMAF scores 95, 93, . . . , 81, and 79.
Figure 2 illustrates the bit rate ladder, which limits the quality difference between two neighboring renditions to
∆VMAFmax for all transmission rates T with R1 ≤ T ≤ RK .

3. ALGORITHM FOR GENERATING A QUALITY-OPTIMIZED BIT RATE
LADDER

The goal of the algorithm is to generate a quality-optimized bit rate ladder that exactly meets the defined
VMAF scores 95, 93, . . . , 81, 79 and requires a minimum number of encodings for this purpose. Since VMAF
is a continuous quantity, the target VMAF scores cannot be achieved precisely. Therefore, a VMAF tolerance
interval is introduced, which can vary in size and has always a positive value. The VMAF tolerance interval is
added to each target VMAF score. In the following, it will be referred to as ϵ. Depending on the size of the
tolerance interval, the VMAF scores are met with varying precision. The parameter ϵ affects the encoding effort
and the precision of the achieved VMAF scores: A larger ϵ results in greater deviations from the target VMAF
scores. The tolerance interval affects the defined VMAF scores as follows. For the highest quality VMAFK of
the bit rate ladder it holds that

95 ≤ VMAFK ≤ 95 + ϵ (1)

and for the subsequent lower qualities VMAFk of the bit rate ladder applies that

VMAFk+1 −∆VMAFmax ≤ VMAFk ≤ VMAFk+1 −∆VMAFmax + ϵ (2)

where ∆VMAFmax is set to 2: VMAFk+1 − 2 ≤ VMAFk ≤ VMAFk+1 − 2 + ϵ. This ensures that the
described VMAF constraints are met. To ensure that VMAF1 = 79 exists during the generation process, a lower
boundary VMAFmin is set as follows

VMAFmin ≤ VMAF1 (3)

As introduced in Section 2, the quality-optimized bit rate ladder that fulfills the described quality constraints
consists of a set of K = 9 renditions. Each rendition has a certain VMAFk. The VMAF results from the
rate control bit rate RRC,k and spatial resolution Scoded,k used for encoding to VMAFk(RRC,k, Scoded,k). For
simplicity, the rate control bit rate RRC,k is turned into Rk and will be referred to as bit rate in the following.
The spatial resolution Scoded,k is turned into Sk. The following assumptions are made for the generation of the
bit rate ladder: Rk < Rk+1, Sk ≤ Sk+1, and VMAFk < VMAFk+1.

Figure 3 shows a simplified block diagram of the proposed algorithm, which is described in more detail in
the following subsections. The algorithm is applicable to both per-shot and per-title encoding. In the generation
process of the quality-optimized bit rate ladder, initial VMAF scores VMAF from performed encodings, addi-

tional VMAF scores ˜VMAF interpolated from the initial VMAF scores and predicted VMAF scores ̂VMAF
are used.

3.1 Generation of 3 x 3 initial VMAF scores

As a first step in generating the initial 3 × 3 VMAF scores VMAF , the maximum spatial resolution Smax is
set to the original resolution of the input video signal and the minimum spatial resolution S1 is set to 512 x 288
luminance samples. Subsequently, using these two spatial resolutions, the maximum bit rate Bmax and the
minimum bit rate B1 are determined. The bit rate Bmax combined with the maximum spatial resolution Smax

should result in a quality greater than or equal to 95 + ϵ. This is realized by the rate control mode Constant
Rate Factor (CRF) of FFmpeg.15 The CRF value is adjusted until the required quality is achieved. The bit rate
B1 is determined in the same manner. However, the minimum spatial resolution S1 is used and the quality
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Figure 3. Simplified block diagram of the proposed algorithm.

VMAFmin must be achieved. Based on the determined bit rates and spatial resolutions, the remaining spatial
resolution and the remaining bit rate are set as follows. A further spatial resolution S2 is defined, where the
following applies: S1 < S2 < Smax and is set to 1024 x 576 luminance samples. A further bit rate B2 is defined
with B1 < B2 < Bmax according to the following formula

log2(Bn) = log2(Bn−1) +
log2(Bmax)− log2(B1)

N − 1
(4)

with n = 2 and N being the number of bit rates, in this case N = 3. After determining the remaining bit rate
and remaining spatial resolution, the 7 remaining VMAF scores are determined by encoding using the rate control
mode 2-pass average bit rate of FFmpeg. At each encoding, the associated VMAF score VMAF (Bn, Sm), ∀n =
1, 2, 3 and ∀m = 1, 2, 3 is calculated by decoding and scaling to the original resolution of the input video signal
using bicubic filtering of the encoded video signal.

3.2 Generation of 45 x 129 predicted VMAF scores

The initial 3 × 3 VMAF scores VMAF (Bn, Sm) are used to generate 45 × 129 predicted VMAF scores
̂VMAF (Bi, Sj), where i = 1, . . . , 129 bit rates and j = 1, . . . , 45 spatial resolutions. This results in 5805 predicted

VMAF scores ̂VMAF (Bi, Sj). The bit rates Bi include the initial bit rates Bn plus an additional 126 bit rates
calculated based on Equation 4. This results in a total of 129 bit rates. To obtain the predicted VMAF scores
̂VMAF (Bi, Sj), first interpolated VMAF scores ˜VMAF (Bi, Sj) are generated. The first interpolated VMAF

scores ˜VMAF (Bi, Sj) are generated using the initial VMAF scores VMAF (Bn, Sm) of the three resolutions Sm.
For this purpose, a two-term power series model VMAF = a · Bb + c is used to generate these additional 129
VMAF scores for each of the three resolutions Sm. The unknown parameters a, b, and c are estimated with a
non-linear least squares method. In a second step, VMAF scores are interpolated for the 42 additional spatial
resolutions for each of the 129 bit rates. A piece-wise cubic Hermite interpolation16 is used. This results in a total

of 5805 interpolated VMAF scores ˜VMAF (Bi, Sj) in which the initial VMAF scores VMAF (Bn, Sm) remain.

To reduce interpolation errors, a neuronal network as shown in Figure 4 is applied to the 5805 interpolated

VMAF scores ˜VMAF (Bi, Sj). For that purpose, a convolutional neural network (CNN) is implemented. To

extract different features from the interpolated VMAF scores ˜VMAF (Bi, Sj), various filter sizes are used in
convolutional blocks. The extracted features are then compiled to form an output using fully connected layers.
To train the neural network, a large set of 2000 video signals is used, which includes video signals from the
BVI-DVC database,17 Tencent Video Dataset (TVD),18 certain shots from Blender sequences,19 and proprietary

sequences. To mitigate prediction errors of the VMAF scores ̂VMAF (Bi, Sj), local low-pass filtering is applied
to the VMAF vs bit rate curve separately for each resolution, and the resulting curves are clipped to the range
of VMAF scores from 0 to 100.
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3.3 Encoding of renditions from the predicted VMAF scores and quality verification

Starting with the rendition of the highest quality VMAFK(RK , SK), the target VMAF range is shown in
Equation 1. All spatial resolutions leading to a VMAF in this range are considered. For each of these spatial

resolutions a linear interpolation is performed between the VMAF score ̂VMAF (Bi, Sj) and the VMAF score
̂VMAF (Bi+1, Sj) which comprises VMAFK = 95 + ϵ

2 . The VMAF score VMAFK is set in this way since the
associated rate control bit rate is not exactly reached by the encoder and the resulting bit rate can be higher or
lower than the desired bit rate. To minimize the bit rate, the spatial resolution that results in the lowest bit rate
at the interpolated VMAFK is selected. This combination of the selected spatial resolution and bit rate is used
for encoding of the rendition with the highest quality. VMAFK of the encoded rendition is calculated and used
to verify that the VMAF score is within the range shown in Equation 1. If necessary, an adjustment of the
bit rate for the rate control mode 2-pass average bit rate is made at the same spatial resolution until the quality
constraint, see Equation 1, is met.

The subsequent renditions are selected based on the VMAF score of the previous renditions and must be in
the range shown in Equation 2. For these renditions, it should be noted that the selected spatial resolution for
the interpolation is less than or equal to the resolution of the previous rendition. For these renditions, the same
iterative procedure of resolution selection, interpolation, and quality verification is performed as for VMAFK .

4. EVALUATION RESULTS

The performance of the algorithm is assessed using a set of 10 HDTV video sequences from the MPEG dataset,20

which is used in the international video coding standardization. These video signals, comprising for instance
ArenaOfValor, BasketballDrive, BQTerrace, Cactus, MarketPlace, and RitualDance, are not included in the
training of the neural network. Various values for ϵ are used to generate the quality-optimized bit rate ladder
and the impact of ϵ is evaluated. For this evaluation, the average total bit rate of the bit rate ladder and the
average number of encodings to generate a rendition are measured for all considered ϵ. To determine the average
total bit rate of the bit rate ladder, the bit rates of all 9 renditions resulting form the algorithm are totaled up
and then averaged over all 10 video sequences. For the measurement of the average number of encodings to
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Figure 5. Measured average total bit rate of the bit rate ladder and the average number of encodings to generate a
rendition for different values for ϵ.

generate a rendition, the number of performed encodings per video sequence is added up and divided by K = 9
renditions. The result is afterwards averaged over the 10 video sequences.

As described in Section 3, the VMAF tolerance interval ϵ can be used to achieve the quality constraints with
adjustable precision. Figure 5 shows the results for different values of ϵ. With a large ϵ of 0.5, the algorithm
requires an average of 2.8 encodings per rendition. However, ϵ of 0.5 is associated with a higher average total
bit rate of 43.2Mbit/s because the quality constraints are less precisely fulfilled. An average VMAF of 95.28
is achieved for the rendition of the highest quality. The average VMAF difference between two bit rate-wise
adjacent renditions is 1.73. A small value for ϵ of 0.05 leads to an average of 5.7 encodings per rendition and
an average total bit rate of 39.7Mbit/s. An average VMAF of 95.02 is achieved for the rendition of the highest
quality and the average VMAF difference between two bit rate-wise adjacent renditions is 1.98. When choosing
a practical value of ϵ = 0.15, the algorithm requires an average of 3.6 encodings per rendition and results in
an average total bit rate of 40.5Mbit/s. An average VMAF of 95.07 is achieved for the rendition of the highest
quality and the average VMAF difference between two bit rate-wise adjacent renditions is 1.92.

5. CONCLUSION

In this paper, an algorithm for a quality-optimized bit rate ladder generation for video streaming services using
a neural network is presented. The bit rate ladder is formed by a set of renditions, each of which is defined
as an encoded video signal with a certain bit rate and spatial resolution. A bit rate ladder, which maximizes
the subjective quality at a minimum bit rate and fulfills the following two constraints was found. First, the
VMAF of the highest provided quality should ideally not exceed 95 as all VMAF scores larger than or equal to
95 are on average associated with the same subjective quality as the original input signal. Second, all VMAF
differences between two bit rate-wise adjacent renditions should ideally be not greater than 2 as this guarantees
indistinguishable subjective quality on average.

The generation of a bit rate ladder fulfilling these constraints faces the major difficulty that today’s encoders
cannot be directly instructed to achieve a certain VMAF and the VMAF can only be determined after decoding
the encoded video signal. Another major difficulty is the fact that a video signal with a certain VMAF can be
generated by various combinations of bit rate and spatial resolution. These difficulties result in a multidimensional



solution space for generating the quality-based bit rate ladder at a minimum bit rate. Additionally, this solution
space varies with the video content.

In this paper, an algorithm is presented which can generate such a bit rate ladder. First, the video signal
is encoded for 9 combinations of 3 bit rates and 3 spatial resolutions and the corresponding VMAF scores are
calculated. Using a specifically designed and trained neural network, the VMAF of 5805 combinations of 129
bit rates and 45 spatial resolutions are predicted from the 9 ones. Based on these 5805 combinations, a bit rate
ladder is extracted, which is further refined afterwards by bit rate adjustments until all VMAF constraints are
fulfilled. Experiments show that the algorithm can generate the desired bit rate ladder with an average as low
as 3.6 encodings per provided rendition. A VMAF score of 95.07 is achieved on average for the highest provided
quality and a VMAF difference of 1.92.
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