Quantization noise reduction in hybrid video coding by a system of three adaptive filters

Picture Coding Symposium 2010

Matthias Narroschke

Panasonic ideas for life Panasonic R&D Center Germany GmbH

December 09, 2010 Slide 1 Matthias Narroschke

Outline

Introduction

 Quantization noise reduction by a system of three adaptive filters

Experiments and results

Conclusion

Block diagram of a standardized hybrid coder

Panasonic ideas for life

Panasonic R&D Center Germany GmbH

Block diagram of a hybrid coder applying an adaptive Wiener filter to reduce the mean squared reconstruction error

USA, September 2007

Panasonic ideas for life Panasonic R&D Center Germany GmbH

Wiener filter

Assumption:

Input signal s is superposed by additive noise q_1

• Filter operation:
$$s'' = \sum_{l=1}^{L} a_l \cdot s'_l + o$$

■ Estimation of Wiener filter coefficients by minimization of mean squared reconstruction error $E[(s-s'')^2] \rightarrow \min$

Panasonic ideas for life Panasonic R&D Center Germany GmbH

Estimation of Wiener filter coefficients

Setting all partial derivations to zero

$$\frac{\partial}{\partial a_l} E\left[(s-s'')^2\right] = 0, \qquad l = 1, \dots, L \qquad \qquad \frac{\partial}{\partial o} E\left[(s-s'')^2\right] = 0$$

• Solving the resulting system of L+1 equations

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_L \\ o \end{bmatrix} = \begin{bmatrix} E[s_1' \cdot s_1'] & E[s_1' \cdot s_2'] & \cdots & E[s_1' \cdot s_L'] & E[s_1'] \\ E[s_2' \cdot s_1'] & \ddots & \vdots & E[s_2'] \\ \vdots & \ddots & \vdots & \vdots \\ E[s_2' \cdot s_1'] & \cdots & E[s_L' \cdot s_L'] & E[s_L'] \\ E[s_1'] & E[s_2'] & \cdots & E[s_L'] & 1 \end{bmatrix}^{-1} \begin{bmatrix} E[s \cdot s_1'] \\ E[s \cdot s_2'] \\ \vdots \\ E[s \cdot s_L'] \\ E[s] \end{bmatrix}$$

• Since $s' = s + q_1$, the filter coefficients depend on the noise q_1

Features of the Adaptive Wiener Filter

Coefficients are estimated individually for each frame

 Estimated coefficients are coded and transmitted together with each frame

Motivation

State of the art

Reduction of the mean squared reconstruction error by applying an adaptive Wiener filter adjusted to the noise of the deblocked signal

Problem

The deblocked signal contains the two components prediction and quantized prediction error. The noise of these two components is different from the noise of the deblocked signal itself:

- □ Noise of deblocked signal is the reconstruction error: $s = s' + q_1$
- □ Noise of prediction signal is the prediction error: $s = \hat{s} + q_2$
- □ Noise of quantized prediction error signal is the quantization error: $e = e' + q_3$

The knowledge of these three individual noise sources is currently not exploited

Approach

To each of the deblocked signal, prediction signal, and quantized prediction error signal, an individual filter is applied

Panasonic ideas for life Panasonic R&D Center Germany GmbH

Block diagram of the extended hybrid coder

Panasonic ideas for life

Panasonic R&D Center Germany GmbH

December 09, 2010 Slide 9 Matthias Narroschke

System of three adaptive filters

Filter operations:

$$s'' = \sum_{l=1}^{L} a_l \cdot s'_l + \sum_{m=1}^{M} b_m \cdot \hat{s}_m + \sum_{n=1}^{N} c_n \cdot e'_n + o$$

 Estimation of filter coefficients by minimization of mean squared reconstruction error

$$E\left[\left(s-s''\right)^2\right] \to \min$$

Estimation of filter coefficients

Setting all partial derivations to zero

$$\frac{\partial}{\partial a_l} E[(s-s'')^2] = 0, \qquad l = 1, \dots, L$$
$$\frac{\partial}{\partial b_m} E[(s-s'')^2] = 0, \qquad m = 1, \dots, M$$
$$\frac{\partial}{\partial c_n} E[(s-s'')^2] = 0, \qquad n = 1, \dots, N$$
$$\frac{\partial}{\partial o} E[(s-s'')^2] = 0$$

• Solving the resulting system of L + M + N + 1 equations

Filter shapes

- All three filters have a squared shape
- Example for L=25

Panasonic ideas for life

Deblocked signal S'

- Selection of filter sizes L, M, and N according to minimum Lagrangian costs of
 - Mean squared reconstruction error
 - □ Bit rate

- Considered filter sizes for each of L, M, N
 - □ 1 (1x1)
 - □ 9 (3x3)
 - □ 25 (5x5)
 - □ 49 (7x7)
 - □ 81 (9x9)

Coding of estimated filter coefficients

Uniform quantization

- Binary arithmetic coding of
 - □ Selected filter sizes L, M, and N
 - Quantized estimated coefficients

Implementation

Implemented in the hybrid coder proposed to the JCT-VC as a response to the call for proposals from ISO/IEC and ITU-T

I. Amonou, et. al., "Description of video coding technology proposal by France Telecom, NTT, NTT DOCOMO, Panasonic and Technicolor", Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 Document JCT-VC A114, 1st Meeting: Dresden, Germany, 15-23 April, 2010

Ranking in the evaluation of all 27 responses to the call for proposal:

□ Within a cluster of the 5 proposals of highest coding efficiency

Experiments

- Reference: Hybrid coder applying no adaptive filter
- Tested
 - Adaptive Wiener Filter
 - □ System of three adaptive filters
- Test conditions
 - □ According to

ITU-T Q6/16 Visual Coding and ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures and Audio, "Joint Call for Proposals on Video Compression Technology", ITU-T Q6/16 doc. VCEG-AM91, Kyoto, Japan, January 2010

- Prediction structure using 7 hierarchical B-Frames
- □ First 2 second of 13 sequences
- □ 4 different quantization step sizes for each sequence
- □ For each frame
 - Filter coefficients are estimated, coded, and transmitted
 - Filter sizes are selected, coded, and transmitted
- Calculation of average bit rate reduction at the same quality according to

G. Bjontegaard, "Improvements of the BD-PSNR model", ITU-T Q6/16 doc. VCEG-AI11, Berlin, Germany, July 2008

Results of experiments

- Average bit rate reduction by the system of three adaptive filters: 4.9% (More than 1.6 times higher than the one of the adaptive Wiener filter)
- For particular sequences: Bit rate reduction of up to 17.1%

Panasonic ideas for life

Panasonic R&D Center Germany GmbH

Summary

- Noise reduction by a system of three adaptive filters exploiting the knowledge of three different noise sources
 - Noise of deblocked signal
 - Noise of prediction signal
 - Noise of quantized prediction error signal
- Filter coefficients and filter sizes are estimated, coded and transmitted for each frame
- Results of experiments
 - □ Average bit rate reduction at the same quality: 4.9%
 - □ For particular sequences: Up to 17.1%
- Application
 - □ Adoption into test model under consideration of ISO/IEC and ITU-T
 - □ Under consideration for a new video coding standard