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Abstract

Reproducing kernel Hilbert spaces are elucidated without assuming
prior familiarity with Hilbert spaces. Compared with extant pedagogic
material, greater care is placed on motivating the definition of repro-
ducing kernel Hilbert spaces and explaining when and why these spaces
are efficacious. The novel viewpoint is that reproducing kernel Hilbert
space theory studies extrinsic geometry, associating with each geomet-
ric configuration a canonical overdetermined coordinate system. This
coordinate system varies continuously with changing geometric config-
urations, making it well-suited for studying problems whose solutions
also vary continuously with changing geometry. This primer can also
serve as an introduction to infinite-dimensional linear algebra because
reproducing kernel Hilbert spaces have more properties in common with
Euclidean spaces than do more general Hilbert spaces.
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1
Introduction

Hilbert space theory is a prime example in mathematics of a beauti-
ful synergy between symbolic manipulation and visual reasoning. Two-
dimensional and three-dimensional pictures can be used to reason about
infinite-dimensional Hilbert spaces, with symbolic manipulations sub-
sequently verifying the soundness of this reasoning, or suggesting mod-
ifications and refinements. Visualising a problem is especially beneficial
because over half the human brain is involved to some extent with vi-
sual processing. Hilbert space theory is an invaluable tool in numerous
signal processing and systems theory applications [62, 12, 10].

Hilbert spaces satisfying certain additional properties are known
as Reproducing Kernel Hilbert Spaces (RKHSs), and RKHS theory is
normally described as a transform theory between Reproducing Kernel
Hilbert Spaces and positive semi-definite functions, called kernels: ev-
ery RKHS has a unique kernel, and certain problems posed in RKHSs
are more easily solved by involving the kernel. However, this descrip-
tion hides the crucial aspect that the kernel captures not just intrinsic
properties of the Hilbert space but also how the Hilbert space is embed-
ded in a larger function space, which is referred to here as its extrinsic
geometry. A novel feature of this primer is drawing attention to this
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3

extrinsic geometry, and using it to explain why certain problems can
be solved more efficiently in terms of the kernel than the space itself.

Another novel feature of this primer is that it motivates and devel-
ops RKHS theory in finite dimensions before considering infinite dimen-
sions. RKHS theory is ingenious; the underlying definitions are simple
but powerful and broadly applicable. These aspects are best brought
out in the finite-dimensional case, free from the distraction of infinite-
dimensional technicalities. Essentially all of the finite-dimensional re-
sults carry over to the infinite-dimensional setting.

This primer ultimately aims to empower readers to recognise when
and how RKHS theory can profit them in their own work. The following
are three of the known uses of RKHS theory.

1. If a problem involves a subspace of a function space, and if the
subspace (or its completion) is a RKHS, then the additional prop-
erties enjoyed by RKHSs may help solve the problem. (Explicitly
computing limits of sequences in Hilbert spaces can be difficult,
but in a RKHS the limit can be found pointwise.)

2. Certain classes of problems involving positive semi-definite func-
tions can be solved by introducing an associated RKHS whose
kernel is precisely the positive semi-definite function of interest.
A classic example, due to Parzen, is associating a RKHS with a
stochastic process, where the kernel of the RKHS is the covari-
ance function of the stochastic process (see §7.2).

3. Given a set of points and a function specifying the desired dis-
tances between points, the points can be embedded in a RKHS
with the distances between points being precisely as prescribed;
see §5. (Support vector machines use this to convert certain non-
linear problems into linear problems.)

In several contexts, RKHS methods have been described as provid-
ing a unified framework [77, 32, 46, 59]; although a subclass of problems
was solved earlier by other techniques, a RKHS approach was found
to be more elegant, have broader applicability, or offer new insight for
obtaining actual solutions, either in closed form or numerically. Parzen
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describes RKHS theory as facilitating a coordinate-free approach [46].
While the underlying Hilbert space certainly allows for coordinate-free
expressions, the power of a RKHS beyond that of a Hilbert space is
the presence of two coordinate systems: the pointwise coordinate sys-
tem coming from the RKHS being a function space, and a canonical
(but overdetermined) coordinate system coming from the kernel. The
pointwise coordinate system facilitates taking limits while a number
of geometric problems have solutions conveniently expressed in terms
of what we define to be the canonical coordinate system. (Geometers
may wish to think of a RKHS as a subspace V ⊂ RX with pointwise
coordinates being the extrinsic coordinates coming from RX while the
canonical coordinates are intrinsic coordinates on V relating directly
to the inner product structure on V .)

The body of the primer elaborates on all of the points mentioned
above and provides simple but illuminating examples to ruminate on.
Parenthetical remarks are used to provide greater technical detail that
some readers may welcome. They may be ignored without compromis-
ing the cohesion of the primer. Proofs are there for those wishing to
gain experience at working with RKHSs; simple proofs are preferred to
short, clever, but otherwise uninformative proofs. Italicised comments
appearing in proofs provide intuition or orientation or both.

This primer is neither a review nor a historical survey, and as such,
many classic works have not been discussed, including those by leading
pioneers such as Wahba [73, 72].

Contributions This primer is effectively in two parts. The first part
(§1–§7), written by the first author, gives a gentle and novel intro-
duction to RKHS theory. It also presents several classical applications.
The second part (§8–§9), with §8 written jointly and §9 written by the
second author, focuses on recent developments in the machine learning
literature concerning embeddings of random variables.
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1.1 Assumed Knowledge

Basic familiarity with concepts from finite-dimensional linear algebra
is assumed: vector space, norm, inner product, linear independence,
basis, orthonormal basis, matrix manipulations and so forth.

Given an inner product 〈·, ·〉, the induced norm is ‖x‖ =
√
〈x, x〉.

Not every norm comes from an inner product, meaning some norms
cannot be written in this form. If a norm does come from an inner
product, the inner product can be uniquely determined from the norm
by the polarisation identity 4〈x, y〉 = ‖x + y‖2 − ‖x − y‖2. (A corre-
sponding formula exists for complex-valued vector spaces.)

A metric d(·, ·) is a “distance function” describing the distance be-
tween two points in a metric space. To be a valid metric, it must satisfy
several axioms, including the triangle inequality. A normed space is au-
tomatically a metric space by the correspondence d(x, y) = ‖x− y‖.

1.2 Extrinsic Geometry and a Motivating Example

Differential geometry groups geometric properties into two kinds: in-
trinsic and extrinsic. Intrinsic properties depend only on the space it-
self, while extrinsic properties depend on precisely how the space is
embedded in a larger space. A simple example in linear algebra is that
the orientation of a straight line passing through the origin in R2 de-
scribes the extrinsic geometry of the line.

The following observation helps motivate the development of finite-
dimensional RKHS theory in §2. Let

L(θ) = {(t cos θ, t sin θ) | t ∈ R} ⊂ R2 (1.1)
denote a straight line in R2 passing through the origin and intersecting
the horizontal axis at an angle of θ radians; it is a one-dimensional
subspace of R2. Fix an arbitrary point p = (p1, p2) ∈ R2 and define
f(θ) to be the point on L(θ) closest to p with respect to the Euclidean
metric. It can be shown that

f(θ) = (r(θ) cos θ, r(θ) sin θ), r(θ) = p1 cos θ + p2 sin θ. (1.2)
Visualising f(θ) as the projection of p onto L(θ) shows that f(θ) de-
pends continuously on the orientation of the line. While (1.2) veri-
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fies this continuous dependence, it resorted to introducing an ad hoc
parametrisation θ, and different values of θ (e.g., θ, π + θ and 2π + θ)
can describe the same line.

Is there a more natural way of representing L(θ) and f(θ), using
linear algebra?

A first attempt might involve using an orthonormal basis vector
to represent L(θ). However, there is no continuous map from the line
L(θ) to an orthonormal basis vector v(θ) ∈ L(θ). (This should be self-
evident with some thought, and follows rigorously from the Borsuk-
Ulam theorem.) Note that θ 7→ (cos θ, sin θ) is not a well-defined map
from L(θ) to R2 because L(0) and L(π) represent the same line yet
(cos 0, sin 0) 6= (cosπ, sin π).

RKHS theory uses not one but two vectors to represent L(θ). Specif-
ically, it turns out that the kernel of L(θ), in matrix form, is

K(θ) =
[
cos θ
sin θ

] [
cos θ sin θ

]
=
[

cos2 θ sin θ cos θ
sin θ cos θ sin2 θ

]
. (1.3)

The columns of K(θ) are

k1(θ) = cos θ
[
cos θ
sin θ

]
, k2(θ) = sin θ

[
cos θ
sin θ

]
. (1.4)

Note that L(θ) is spanned by k1(θ) and k2(θ), and moreover, both k1
and k2 are well-defined (and continuous) functions of L; if L(θ) = L(φ)
then k1(θ) = k1(φ) and k2(θ) = k2(φ). To emphasise, although θ is
used here for convenience to describe the construction, RKHS theory
defines a map from L to k1 and k2 that does not depend on any ad hoc
choice of parametrisation. It is valid to write k1(L) and k2(L) to show
they are functions of L alone.

Interestingly, f has a simple representation in terms of the kernel:

f(L) = p1 k1(L) + p2 k2(L). (1.5)

Compared with (1.2), this is both simple and natural, and does not
depend on any ad hoc parametrisation θ of the line L. In summary,
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• the kernel represents a vector subspace by a possibly overdeter-
mined (i.e., linearly dependent) ordered set of vectors, and the
correspondence from a subspace to this ordered set is continuous;

• this continuous correspondence cannot be achieved with an or-
dered set of basis (i.e., linearly independent) vectors;

• certain problems have solutions that depend continuously on the
subspace and can be written elegantly in terms of the kernel:

subspace→ kernel→ solution. (1.6)

The above will be described in greater detail in §2.

Remark The above example was chosen for its simplicity. Ironically,
the general problem of projecting a point onto a subspace is not well-
suited to the RKHS framework for several reasons, including that
RKHS theory assumes there is a norm only on the subspace; if there is
a norm on the larger space in which the subspace sits then it is ignored.
A more typical optimisation problem benefitting from RKHS theory is
finding the minimum-norm function passing through a finite number of
given points; minimising the norm acts to regularise this interpolation
problem; see §6.1.

1.3 Pointwise Coordinates and Canonical Coordinates

Aimed at readers already familiar with Hilbert space theory, this sec-
tion motivates and defines two coordinate systems on a RKHS.

A separable Hilbert space H possesses an orthonormal basis
e1, e2, · · · ∈ H. An arbitrary element v ∈ H can be expressed as an
infinite series v = ∑∞

i=0 αiei where the “coordinates” αi are given by
αi = 〈v, ei〉. A classic example is using a Fourier series to represent a
periodic function. The utility of such a construction is that an arbitrary
element of H can be written as the limit of a linear combination of a
manageable set of fixed vectors.

RKHS theory generalises this ability of writing an arbitrary element
of a Hilbert space as the limit of a linear combination of a manageable
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set of fixed vectors. If H ⊂ RT is a (not necessarily separable) RKHS
then an arbitrary element v ∈ H can be expressed as the limit of
a sequence v1, v2, · · · ∈ H of vectors, each of which is a finite linear
combination of the vectors {K(·, t) | t ∈ T}, where K : T × T → R is
the kernel of H. It is this ability to represent an arbitrary element of
a RKHS H as the limit of a linear combination of the K(·, t) that, for
brevity, we refer to as the presence of a canonical coordinate system.
The utility of this canonical coordinate system was hinted at in §1.2.

There is another natural coordinate system: since an element v of
a RKHS H ⊂ RT is a function from T to R, its tth coordinate can
be thought of as v(t). The relationship between this pointwise coor-
dinate system and the aforementioned canonical coordinates is that
v(t) = 〈v,K(·, t)〉. Note though that whereas an arbitrary linear com-
bination of the K(·, t) is guaranteed to be an element of H, assigning
values arbitrarily to the v(t), i.e., writing down an arbitrary function
v, may not yield an element of H; canonical coordinates are intrinsic
whereas pointwise coordinates are extrinsic. The utility of the pointwise
coordinate system is that limits in a RKHS can be determined point-
wise: if vk is a Cauchy sequence, implying there exists a v satisfying
‖vk − v‖ → 0, then v is fully determined by v(t) = limk vk(t).



2
Finite-dimensional RKHSs

Pedagogic material on RKHSs generally considers infinite-dimensional
spaces from the outset1. Starting with finite-dimensional spaces though
is advantageous because the remarkable aspects of RKHS theory are al-
ready evident in finite dimensions, where they are clearer to see and eas-
ier to study. The infinite-dimensional theory is a conceptually straight-
forward extension of the finite-dimensional theory.

Although elements of a RKHS must be functions, there is a
canonical correspondence between Rn and real-valued functions on
{1, 2, · · · , n} given by the rule that (x1, · · · , xn) ∈ Rn is equivalent to
the function f : {1, 2, · · · , n} → R satisfying f(i) = xi for i = 1, · · · , n.
To exemplify, the point (5, 8, 4) ∈ R3 is canonically equivalent to the
function f : {1, 2, 3} → R given by f(1) = 5, f(2) = 8 and f(3) = 4.
For simplicity and clarity, this primer initially works with Rn.

Remark The term finite-dimensional RKHS is potentially ambiguous;
is merely the RKHS itself finite-dimensional, or must the embedding

1The tutorial [66] considers finite-dimensional spaces but differs markedly from
the presentation here. An aim of [66] is explaining the types of regularisation achiev-
able by minimising a RKHS norm.

9



10 Finite-dimensional RKHSs

space also be finite dimensional? For convenience, we adopt the latter
interpretation. While this interpretation is not standard, it is consistent
with our emphasis on the embedding space playing a significant role in
RKHS theory. Precisely, we say a RKHS is finite dimensional if the set
X in §4 has finite cardinality.

2.1 The Kernel of an Inner Product Subspace

Central to RKHS theory is the following question. Let V ⊂ Rn be en-
dowed with an inner product. How can this configuration be described
efficiently? The configuration involves three aspects: the vector space
V , the orientation of V in Rn, and the inner product on V . Importantly,
the inner product is not defined on the whole of Rn, unless V = Rn.
(An alternative viewpoint that will emerge later is that RKHS theory
studies possibly degenerate inner products on Rn, where V represents
the largest subspace on which the inner product is not degenerate.)

One way of describing the configuration is by writing down a basis
{v1, · · · , vr} ⊂ V ⊂ Rn for V and the corresponding Gram matrix G
whose ijth element is Gij = 〈vi, vj〉. Alternatively, the configuration
is completely described by giving an orthonormal basis {u1, · · · , ur} ⊂
V ⊂ Rn; the Gram matrix associated with an orthonormal basis is
the identity matrix and does not need to be stated explicitly. However,
these representations do not satisfy the following requirements because
there is no unique choice for a basis, even an orthonormal basis.

One-to-one The relationship between a subspace V of Rn and its
representation should be one-to-one.

Respect Topology If (V1, 〈·, ·〉1), (V2, 〈·, ·〉2), · · · is a sequence of inner
product spaces “converging” to (V, 〈·, ·〉) then the representations
of (V1, 〈·, ·〉1), (V2, 〈·, ·〉2), · · · should “converge” to the represen-
tation of (V, 〈·, ·〉), and vice versa.

Straightforward Inverse It should be easy to deduce V and its inner
product from its representation.

The lack of a canonical basis for V can be overcome by considering
spanning sets instead. Whereas a basis induces a coordinate system, a
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spanning set that is not a basis induces an overdetermined coordinate
system due to linear dependence.

RKHS theory produces a unique ordered spanning set k1, · · · , kn
for V ⊂ Rn by the rule that ki is the unique vector in V satisfying
〈v, ki〉 = e>i v for all v ∈ V . Here and throughout, ei denotes the vector
whose elements are zero except for the ith which is unity; its dimension
should always be clear from the context. In words, taking the inner
product with ki extracts the ith element of a vector. This representation
looks ad hoc yet has proven to be remarkably useful, in part because
it unites three different perspectives given by the three distinct but
equivalent definitions below.

Definition 2.1. Let V ⊂ Rn be an inner product space. The kernel of
V is the unique matrix K = [k1 k2 · · · kn] ∈ Rn×n determined by any
of the following three equivalent definitions.

1. K is such that each ki is in V and 〈v, ki〉 = e>i v for all v ∈ V .

2. K = u1u
>
1 + · · ·+ uru

>
r where u1, · · · , ur is an orthonormal basis

for V .

3. K is such that the ki span V and 〈kj , ki〉 = Kij .

The third definition is remarkable despite following easily from the
first definition because it shows that K ∈ Rn×n is the Gram matrix
corresponding to the vectors k1, · · · , kn. The kernel simultaneously en-
codes a set of vectors that span V and the corresponding Gram matrix
for those vectors!

The name reproducing kernel can be attributed either to the kernel
K reproducing itself in that its ijth element Kij is the inner product
of its jth and ith columns 〈kj , ki〉, or to the vectors ki reproducing an
arbitrary vector v by virtue of v = (〈v, k1〉, · · · , 〈v, kn〉).

Example 2.1. Equip V = Rn with an inner product 〈u, v〉 = v>Qu

where Q is symmetric (and positive definite). The equation 〈v, ki〉 =
e>i v implies ki = Q−1ei, that is, K = Q−1. Alternatively, an eigende-
composition Q = XDX> yields an orthonormal basis for V given by
the scaled columns of X, namely, {XD− 1

2 e1, · · · , XD−
1
2 en}. Therefore
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K = ∑n
i=1(XD− 1

2 ei)(XD−
1
2 ei)> = XD−1X> = Q−1. Observe that

〈kj , ki〉 = 〈Q−1ej , Q
−1ei〉 = e>i Q

−1ej = e>i Kej = Kij .

Example 2.2. Let V ⊂ R2 be the subspace spanned by the vector
(1, 1) and endowed with the inner product giving the vector (1, 1) unit
norm. Then {(1, 1)} is an orthonormal basis for V and therefore K =[
1
1

] [
1 1

]
=
[
1 1
1 1

]
.

Example 2.3. The configuration having K =
[
1 0
0 0

]
as its kernel can

be found as follows. Since K is two-by-two, V must sit inside R2. Since
V is the span of k1 = [1 0]> and k2 = [0 0]>, V = R× {0}. The vector
k1 has unit norm in V because 〈k1, k1〉 = K11 = 1.

Before proving the three definitions of K are equivalent, several
remarks are made. Existence and uniqueness of K follows most easily
from definition one because the defining equations are linear. From def-
inition one alone it would seem remarkable that K is always positive
semi-definite, denoted K ≥ 0, yet this fact follows immediately from
definition two. Recall that a positive semi-definite matrix is a symmet-
ric matrix whose eigenvalues are greater than or equal to zero. That K
is unique is not clear from definition two alone. Definition three gives
perhaps the most important characterisation of K, yet from definition
three alone it is not at all obvious that such a K exists. Definition three
also implies that any element of V can be written as a linear combina-
tion Kα of the columns of K, and 〈Kα,Kβ〉 = β>Kα. The reader is
invited to verify this by writing Kβ as β1k1 + · · ·+ βnkn.

Lemma 2.1. Given an inner product space V ⊂ Rn, there is precisely
one K = [k1, · · · , kn] ∈ Rn×n for which each ki is in V and satisfies
〈v, ki〉 = e>i v for all v ∈ V .

Proof. This is an exercise in abstract linear algebra that is the gener-
alisation of the linear equation Ax = b having a unique solution if A
is square and non-singular. Let v1, · · · , vr be a basis for V . Linearity
implies the constraints on ki are equivalent to requiring 〈vj , ki〉 = e>i vj
for j = 1, · · · , r. Let L denote the linear operator taking k ∈ V to
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(〈v1, k〉, 〈v2, k〉, · · · , 〈vr, k〉). Both the domain V and the range Rr of
L have dimension r. The linear operator L is equivalent to a square
matrix. Now, L is injective because if L(k) = L(k̃) then L(k − k̃) = 0,
that is, 〈v, k − k̃〉 = 0 for all v ∈ V (because v1, · · · , vr is a basis), and
in particular, 〈k − k̃, k − k̃〉 = 0, implying k = k̃. The linear operator
L is non-singular. Therefore, L is also surjective, and in particular,
L(ki) = (e>i v1, · · · , e>i vr) has one and only one solution.

Definition three gives a non-linear characterisation of K requiring
ki to extract the ith element of the vectors kj whereas definition one
requires ki to extract the ith element of any vector v. However, def-
inition three also requires the kj to span V , therefore, by writing an
arbitrary vector v as a linear combination of the vj , it becomes evident
that definition three satisfies definition one.

Lemma 2.2. If K is such that the ki span V and 〈kj , ki〉 = Kij then
〈v, ki〉 = e>i v for all v ∈ V .

Proof. Fix a v ∈ V . Since v is in V and the ki span V , there is a vector
α such that v = Kα. Also, ki = Kei. Therefore, 〈v, ki〉 = 〈Kα,Kei〉 =
e>i Kα = e>i v, as required. (Recall from earlier that 〈kj , ki〉 = Kij

implies 〈Kα,Kβ〉 = β>Kα.)

The existence of a K satisfying definition three is implied by the
existence of a K satisfying definition one.

Lemma 2.3. If K is such that each ki is in V and 〈v, ki〉 = e>i v for all
v ∈ V then the ki span V and 〈kj , ki〉 = Kij .

Proof. That 〈kj , ki〉 = Kij follows immediately from Kij being the ith
element of kj , namely, e>i kj . If the ki do not span V then there is a non-
zero k ∈ V which is orthogonal to each and every ki, that is, 〈k, ki〉 = 0.
Yet this implies e>i k = 0 for all i, that is, k = 0, a contradiction.

If the columns of U ∈ Rn×r form an orthonormal basis for V ⊂ Rn

then an arbitrary vector in V can be written as Uα, and moreover,
〈Uα,Uβ〉 = β>α. Referring to definition two, if the ui are the columns
of U , then u1u

>
1 + · · ·+uru

>
r = UU>. Armed with these facts, showing

definition two satisfies definition one becomes straightforward.
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Lemma 2.4. If u1, · · · , ur is an orthonormal basis for V then K =
u1u

>
1 + · · ·+ uru

>
r satisfies 〈v, ki〉 = e>i v for all v ∈ V .

Proof. Let U = [u1, · · · , ur], so thatK = UU> and ki = Kei = UU>ei.
An arbitrary v ∈ V can be represented as v = Uα. Therefore 〈v, ki〉 =
〈Uα,UU>ei〉 = e>i Uα = e>i v, as required.

Since definition one produces a unique K, and definitions two and
three both produce a K satisfying definition one, the equivalence of the
three definitions has been proven.

The next pleasant surprise is that for every positive semi-definite
matrix K ∈ Rn×n there is an inner product space V ⊂ Rn whose kernel
is K. The proof relies on the following.

Lemma 2.5. If K ∈ Rn×n is positive semi-definite then α>Kα = 0
implies Kα = 0, where α is a vector in Rn.

Proof. Eigendecompose K as K = UDU>. Let β = U>α. Then
α>Kα = 0 implies β>Dβ = 0. Since D ≥ 0, Dβ must be zero. There-
fore Kα = UDU>α = UDβ = 0.

Lemma 2.6. Let V = span{k1, · · · , kn} be the space spanned by the
columns k1, · · · , kn of a positive semi-definite matrix K ∈ Rn×n. There
exists an inner product on V satisfying 〈kj , ki〉 = Kij .

Proof. Let u, v ∈ V . Then there exist vectors α, β such that u = Kα

and v = Kβ. Define 〈u, v〉 to be β>Kα. To show this is well-defined,
let u = Kα̃ and v = Kβ̃ be possibly different representations. Then
β>Kα− β̃>Kα̃ = (β − β̃)>Kα+ β̃>K(α− α̃) = 0 because Kα = Kα̃,
Kβ = Kβ̃ and K = K>. Clearly 〈·, ·〉 so defined is bilinear. To prove
〈·, ·〉 is positive definite, assume 〈Kα,Kα〉 = α>Kα = 0. By Lemma 2.5
this implies Kα = 0, as required.

Given K, there is a unique inner product space whose kernel is K.

Lemma 2.7. Let V1 ⊂ Rn and V2 ⊂ Rn be two inner product spaces
having the same kernel K. Then V1 and V2 are identical spaces: V1 = V2
and their inner products are the same.
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Proof. The columns of K span both V1 and V2, hence V1 = V2. For the
same reason, the inner products on V1 and V2 are uniquely determined
from the Gram matrix K corresponding to k1, · · · , kn. Since V1 and
V2 have the same Gram matrix, their inner products are identical too.
(Indeed, the inner product must be given by 〈Kα,Kβ〉 = β>Kα.)

To summarise, for a fixed n, there is a bijective correspondence be-
tween inner product spaces V ⊂ Rn and positive semi-definite matrices
K ∈ Rn×n. Given V ⊂ Rn there is precisely one kernel K ≥ 0 (Defini-
tion 2.1 and Lemma 2.1). Given a K ≥ 0, there is precisely one inner
product space V ⊂ Rn for which K is its kernel (Lemmata 2.6 and 2.7).
Recalling the criteria listed earlier, this correspondence is One-to-one
and has a Straightforward Inverse. That it Respects Topology is dis-
cussed next.

2.2 Sequences of Inner Product Spaces

A sequence of one-dimensional vector spaces in R2 can be visualised as
a collection of lines passing through the origin and numbered 1, 2, · · · .
It can be recognised visually when such a sequence converges. (This
corresponds to the topology of the Grassmann manifold.) The kernel
representation of an inner product space induces a concept of conver-
gence for the broader situation of a sequence of inner product subspaces,
possibly of differing dimensions, by declaring that the limit V∞ ⊂ Rn of
a sequence of inner product spaces V1, V2, · · · ⊂ Rn is the space whose
kernel is K∞ = limn→∞Kn, if the limit exists. This makes the kernel
representation of a subspace Respect Topology. The pertinent question
is whether the induced topology is sensible in practice.

Example 2.4. Define on R2 a sequence of inner products 〈u, v〉n =
v>Qnu where Qn = diag{1, n2} is a diagonal matrix with entries 1 and
n2. An orthonormal basis for the nth space is {(1, 0), (0, n−1)}. It seems
acceptable, at least in certain situations, to agree that the limit of this
sequence of two-dimensional spaces is the one-dimensional subspace
of R2 spanned by (1, 0). This accords with defining convergence via
kernels. Let Kn be the kernel of the nth space: Kn = diag{1, n−2}.
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Then K∞ = limn→∞Kn = diag{1, 0}. The space V∞ having kernel
K∞ is the subspace of R2 spanned by (1, 0), where the inner product
is such that (1, 0) has unit norm.

The example above illustrates a general principle: since K can be
defined in terms of an orthonormal basis as K = u1u

>
1 + · · ·+ uru

>
r , a

sequence of higher-dimensional inner product spaces can converge to a
lower-dimensional inner product space if one or more of the orthonor-
mal basis vectors approaches the zero vector. This need not be the only
sensible topology, but it is a topology that finds practical use, as later
verified by examples.

Remark Recall from Example 2.1 that if V = Rn thenK = Q−1. IfQn
is a sequence of positive definite matrices becoming degenerate in the
limit, meaning one or more eigenvalues goes to infinity, then Qn does
not have a limit. However, the corresponding eigenvalues of Kn = Q−1

n

go to zero, hence the kernel Kn may have a well-defined limit. In this
sense, RKHS theory encompasses degenerate inner products. A way of
visualising this is presented in §2.4.

2.3 Extrinsic Geometry and Interpolation

Finite-dimensional RKHS theory studies subspaces V of Rn rather than
abstract vector spaces. If it is only known that Z is an abstract vector
space then there is no way of knowing what the elements of Z look like.
The best that can be done is assert the existence of a basis {b1, · · · , br}.
By comparison, knowing V ⊂ Rn allows working with V using extrinsic
coordinates by writing an element of V as a vector in Rn.

Writing V ⊂ Rn may also signify the importance of the orientation
of V inside Rn. If V and W are r-dimensional linear subspaces of Rn
then their intrinsic geometry is the same but their extrinsic geometry
may differ; V and W are equivalent (precisely, isomorphic) as vector
spaces but they lie inside Rn differently unless V = W .

The usefulness of extrinsic geometry is exemplified by considering
the interpolation problem of finding a vector x ∈ V ⊂ Rn of smallest
norm and some of whose coordinates e>i x are specified. This problem is
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posed using extrinsic geometry. It can be rewritten intrinsically, with-
out reference to Rn, by using the linear operator Li : V → R defined
to be the restriction of x 7→ e>i x. However, the extrinsic formulation is
the more amenable to a unified approach.

Example 2.5. Endow V ⊂ Rn with an inner product. Fix an i and
consider how to find x ∈ V satisfying e>i x = 1 and having the smallest
norm. Geometrically, such an x must be orthogonal to any vector v ∈ V
satisfying e>i v = 0, for otherwise its norm could be decreased. This
approach allows x to be found by solving a system of linear equations,
however, going further seems to require choosing a basis for V .

RKHS theory replaces an ad hoc choice of basis for V ⊂ Rn by
the particular choice k1, · · · , kn of spanning vectors for V . Because the
kernel representation Respects Topology, the vectors k1, · · · , kn vary
continuously with changing V . The solution to the interpolation prob-
lem should also vary continuously as V changes. There is thus a chance
that the solution can be written elegantly in terms of k1, · · · , kn.

Example 2.6. Continuing the example above, let K = [k1, · · · , kn] be
the kernel of V . Let x = Kα and v = Kβ. The constraints e>i x = 1
and 〈x, v〉 = 0 whenever e>i v = 0 become k>i α = 1 and β>Kα = 0
whenever β>Kei = 0. (Recall that i is fixed.) The latter requirement
is satisfied by α = cei where c ∈ R is a scalar. Solving k>i α = 1 implies
c = K−1

ii . Therefore, x = K−1
ii ki. Note ‖x‖2 = 〈x, x〉 = K−1

ii .

In the above example, as V changes, both the kernel K and the
solution x change. Yet the relationship between x and K remains con-
stant: x = K−1

ii ki. This is further evidence that the representation K
of the extrinsic geometry is a useful representation.

There is a geometric explanation for the columns of K solving the
single-point interpolation problem. Let Li : V → R denote the ith co-
ordinate function: Li(v) = e>i v. That 〈v, ki〉 = Li(v) means ki is the
gradient of Li. In particular, the line determined by ki meets the level
set {v | Li(v) = 1} at right angles, showing that ki meets the or-
thogonality conditions for optimality. Turning this around leads to yet
another definition of K.
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Lemma 2.8. The following is a geometric definition of the ki that is
equivalent to Definition 2.1. Let Hi = {z ∈ Rn | e>i z = 1} be the
hyperplane consisting of all vectors whose ith coordinate is unity. If
V ∩Hi is empty then define ki = 0. Otherwise, let k̃i be the point in
the intersection V ∩ Hi that is closest to the origin. Define ki to be
ki = ck̃i where c = 〈k̃i, k̃i〉−1.

Proof. SinceK is unique (Lemma 2.1), it suffices to prove the ki defined
here satisfy definition one of Definition 2.1. If V ∩ Hi is empty then
e>i v = 0 for all v ∈ V and ki = 0 satisfies definition one. Assume
then that V ∩Hi is non-empty. It has a closest point, k̃i, to the origin.
As e>i k̃i = 1, k̃i is non-zero and c is well-defined. Also, 〈w, k̃i〉 = 0
whenever w ∈ V satisfies e>i w = 0, for otherwise k̃i would not have the
smallest norm. Let v ∈ V be arbitrary and define w = v − ak̃i where
a = e>i v. Then e>i w = e>i v − a = 0. Thus 〈v, ki〉 = 〈w + ak̃i, ck̃i〉 =
ac〈k̃i, k̃i〉 = a = e>i v, as required.

The c in the lemma scales k̃i so that 〈ki, ki〉 = e>i ki. It is also clear
that if ki 6= 0 then Kii 6= 0, or in other words, if Kii = 0 then the ith
coordinate of every vector v in V is zero and the interpolation problem
has no solution.

2.4 Visualising RKHSs

It is more expedient to understand RKHS theory by focusing on the
columns ki of the kernel K rather than on the matrix K itself; K being
a positive semi-definite matrix corresponding to the Gram matrix of the
ki is a wonderful bonus. The indexed set of vectors k1, · · · , kn changes
in a desirable way as V ⊂ Rn changes. This can be visualised explicitly
for low-dimensional examples.

The inner product on a two-dimensional vector space V can be de-
picted by drawing the ellipse {v ∈ V | 〈v, v〉 = 1} on V because the
inner product is uniquely determined from the norm, and the ellipse
uniquely determines the norm. Based on Lemma 2.8, the columns k1
and k2 of the kernel K corresponding to V ⊂ R2 can be found geomet-
rically, as explained in the caption of Figure 2.1.
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Figures 2.2 and 2.3 reveal how k1 and k2 vary as the inner product
on V = R2 changes. Figure 2.3 shows that k1 and k2 vary smoothly
as the inner product changes. By comparison, an orthonormal basis
formed from the principal and minor axes of the ellipse must have
a discontinuity somewhere, because after a 180 degree rotation, the
ellipse returns to its original shape yet, for example, {e1,

1
2e2} rotated

180 degrees is {−e1,−1
2e2}, which differs from {e1,

1
2e2}.

Figure 2.4 illustrates the kernel of various one-dimensional sub-
spaces in R2. As V is one-dimensional, k1 and k2 must be linearly
dependent since they span V . Together, k1 and k2 describe not only V
and its inner product, but also the orientation of V in R2.

Figure 2.5 portrays how a sequence of two-dimensional subspaces
can converge to a one-dimensional subspace. From the perspective of
the inner product, the convergence is visualised by an ellipse degener-
ating to a line segment. From the perspective of the kernel K = [k1 k2],
the convergence is visualised by k1 and k2 individually converging to
vectors lying in the same subspace.

The figures convey the message that the ki are a spanning set for V
that vary continuously with changing V . Precisely how they change is of
more algebraic than geometric importance; the property 〈kj , ki〉 = Kij

is very convenient to work with algebraically.

2.5 RKHSs over the Complex Field

RKHS theory extends naturally to complex-valued vector spaces. In
finite dimensions, this means considering subspaces V ⊂ Cn where V
is equipped with a complex-valued inner product 〈·, ·〉 : V × V → C.
The only change to Definition 2.1 is replacing K = u1u

>
1 + · · ·+ uru

>
r

by K = u1u
H
1 + · · ·+ uru

H
r where H denotes Hermitian transpose.

The kernel K will always be Hermitian (K = KH) and positive
semi-definite. Swapping the order of an inner product introduces a
conjugation: 〈u, v〉 = 〈v, u〉. Beyond such minor details, the real-valued
and complex-valued theories are essentially the same.
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x = 1

y = 1

k1

k2

k̃1

cc2

k̃2

Figure 2.1: The ellipse comprises all points one unit from the origin. It determines
the chosen inner product on R2. The vector k̃1 is the closest point to the origin on
the vertical line x = 1. It can be found by enlarging the ellipse until it first touches
the line x = 1, or equivalently, as illustrated, it can be found by shifting the line
x = 1 horizontally until it meets the ellipse tangentially, represented by the dashed
vertical line, then travelling radially outwards from the point of intersection until
reaching the line x = 1. The vector k1 is a scaled version of k̃1. If the dashed vertical
line intersects the x-axis at c then k1 = c2k̃1. Equivalently, k1 is such that its tip
intersects the line x = c2. The determination of k2 is analogous but with respect to
the horizontal line y = 1.
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Figure 2.2: Shown are the vectors k1 (red) and k2 (blue) corresponding to rotated
versions of the inner product 〈u, v〉 = v>Qu where Q = diag{1, 4}. The magnitude
and angle of k1 and k2 are plotted in Figure 2.3.
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Figure 2.3: Plotted are the magnitude and angle of k1 (red) and k2 (blue)
corresponding to rotated versions of the inner product 〈u, v〉 = v>Qu where
Q = diag{1, 4}, as in Figure 2.2.
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Figure 2.4: Shown are k1 (red) and k2 (blue) for various one-dimensional sub-
spaces (black) of R2. In all cases, the inner product is the standard Euclidean inner
product. Although not shown, k2 is zero when V is horizontal, and k1 is zero when
V is vertical. Therefore, the magnitude of the red vectors increases from zero to a
maximum then decreases back to zero. The same occurs for the blue vectors.
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Figure 2.5: Illustration of how, as the ellipse gets narrower, the two-dimensional
inner product space V = R2 converges to a one-dimensional inner product space.
The kernels of the subspaces are represented by red (k1) and blue (k2) vectors.



3
Function Spaces

Typifying infinite-dimensional vector spaces are function spaces. Given
an arbitrary setX, let RX = {f : X → R} denote the set of all functions
from X to R. It is usually given a vector space structure whose simplic-
ity belies its usefulness: vector-space operations are defined pointwise,
meaning scalar multiplication α ·f sends the function f to the function
g given by g(x) = α f(x), while vector addition sends f + g to the
function h defined by h(x) = f(x) + g(x).

The space RX is often too large to be useful on its own, but it con-
tains useful subspaces, such as the spaces of all continuous, smooth or
analytic functions. (This necessitates X having an appropriate struc-
ture; for example, it does not make sense for a function f : X → R
to be continuous unless X is a topological space.) Note that to be a
subspace, as opposed to merely a subset, the restrictions placed on the
functions must be closed with respect to vector-space operations: if f
and g are in the subset and α is an arbitrary scalar then f + g and α f
must also be in the subset. While the set of all continuous functions
f : [0, 1] → R on the interval [0, 1] ⊂ R is a vector subspace of R[0,1],
the set of all functions f : [0, 1]→ R satisfying f(1) ≤ 1 is not.

25
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3.1 Function Approximation

Function approximation is an insightful example of how function spaces
facilitate geometric reasoning for solving algebraic problems [41].

Example 3.1. Denote by C2[0, 1] the space of continuous functions
f : [0, 1]→ R equipped with the inner product 〈f, g〉 =

∫ 1
0 f(x)g(x) dx.

The square of the induced norm is ‖f‖2 = 〈f, f〉 =
∫ 1

0 [f(x)]2 dx. Let
V denote the subspace of C2[0, 1] spanned by the functions g0(x) = 1,
g1(x) = x and g2(x) = x2. In words, V is the space of all polynomials
of degree at most two. Fix an f , say, f(x) = ex − 1. Consider finding
g ∈ V that minimises ‖f − g‖2. Figure 3.1 visualises this in two ways.
Graphing f does not help in finding g, whereas treating f and g as
elements of a function space suggests g can be found by solving the
linear equations 〈f − g, v〉 = 0 for all v ∈ V .

An orthogonal basis for V is p0(x) = 1, p1(x) = 2x− 1 and p2(x) =
6x2−6x+1. (These are the shifted Legendre polynomials.) Note ‖pi‖2 =
(2i + 1)−1. Write g as g = α0p0 + α1p1 + α2p2. Attempting to solve
〈f − g, v〉 = 0 for v ∈ {p0, p1, p2} leads to the equations 〈αipi, pi〉 =
〈f, pi〉. Since 〈f, p0〉 = e− 2, 〈f, p1〉 = 3− e and 〈f, p2〉 = 7e− 19, the
coefficients αi are found to be α0 = e−2, α1 = 9−3e and α2 = 35e−95.

The simple optimisation problem in Example 3.1 could have been
solved using calculus by setting to zero the derivatives of ‖f−∑i αipi‖2
with respect to the αi. Importantly though, setting the derivatives to
zero in general does not guarantee finding the optimal solution because
the optimal solution need not exist1. When applicable, vector space
methods go beyond calculus in that they can guarantee the optimal
solution has been found. (Calculus examines local properties whereas
being a global optimum is a global property.)

Infinite-dimensional inner product spaces can exhibit behaviour not
found in finite-dimensional spaces. The projection of f onto V shown
in Figure 3.1 suggesting every minimum-norm problem has a solution
is not necessarily true in infinite dimensions, as Example 3.2 will ex-
emplify. Conditions must be imposed before the geometric picture in

1See [70] for a historical account relating to existence of optimal solutions.



3.1. Function Approximation 27

f
g

V

f

g

Figure 3.1: On the left is the direct way of visualising the function approximation
problem: given a function f (blue), find a function g (red) that best approximates
f , where g is constrained to a subclass of functions. Shown here is the second-order
polynomial approximation of f(x) = ex−1 found in Example 3.1. It approximates f
well, in that the graphs of f and g overlap. On the right is a geometric visualisation
of the function approximation problem, made possible by representing functions not
by their graphs (left) but as elements of a vector space (right). The subspace V is
the subclass of functions in which g must lie. Minimising the square of the norm
‖f − g‖ means finding the point on V that is closest to f . As the norm comes from
an inner product, the point g must be such that f − g is perpendicular to every
function in V .

Figure 3.1 accurately describes the infinite-dimensional function ap-
proximation problem.

When coming to terms with infinite-dimensional spaces, one of the
simplest (Hilbert) spaces to contemplate is l2, the space of square-
summable sequences. Elements of l2 are those sequences of real numbers
for which the sum of the squares of each term of the sequence is finite.
In symbols, x = (x1, x2, · · · ) is in l2 if and only if ∑∞i=1 x

2
i < ∞. For

example, (1, 1
2 ,

1
4 ,

1
8 , · · · ) is in l2. The inner product on l2 is implicitly

taken to be 〈x, y〉 = ∑∞
i=1 xiyi. Note that the square of the induced

norm is ‖x‖2 = ∑∞
i=1 x

2
i and hence the condition for x to be in l2 is

precisely the condition that it have finite l2-norm.
Approximating an element of l2 by an element of a subspace V ⊂ l2

can be considered a function approximation problem because there is a
canonical correspondence between l2 and a subclass of functions from
{1, 2, · · · } to R, just as there is a canonical correspondence between
Rn and functions from {1, · · · , n} to R. (The subclass comprises those
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functions f for which ∑∞i=1 f(i)2 <∞.)

Example 3.2. Let V ⊂ l2 be the vector space of sequences with only a
finite number of non-zero terms, thought of as a subspace of l2. There is
no element g of V that minimises ‖f − g‖2 when f = (1, 1

2 ,
1
4 , · · · ) ∈ l2.

Given any approximation g of f , it can always be improved by changing
a zero term in g to make it match the corresponding term in f . A
rigorous proof goes as follows. Assume to the contrary there exists a
g ∈ V such that ‖f − g̃‖ ≥ ‖f − g‖ for all g̃ ∈ V . Let i be the smallest
integer such that gi = 0. It exists because only a finite number of terms
of g are non-zero. Let g̃ be a replica of g except for setting its ith term
to g̃i = fi. Let e be the zero sequence except for the ith term which
is unity. Then f − g = (f − g̃) + fie. Since 〈f − g̃, e〉 = 0, ‖f − g‖2 =
‖f − g̃‖2 + f2

i ‖e‖2, implying ‖f − g̃‖ < ‖f − g‖ and contradicting the
existence of an optimal element g.

Reconciling the algebra in Example 3.2 proving the non-existence
of an optimal approximation, with the geometry depicted in Figure 3.1
suggesting otherwise, requires understanding the interplay between vec-
tor space structures and topological structures induced by the norm.

Before delving into that topic, it is penetrating to ascertain whether
RKHS theory may be beneficially applied to the function approxima-
tion problem. A novel feature of this primer is considering RKHS the-
ory from the “dynamic” perspective of how K changes in response to
changing V . The solution of the interpolation problem in Examples 2.5
and 2.6 is continuous in K, and in particular, a solution can be found
even for a lower-dimensional V ⊂ Rn by working in Rn and taking lim-
its as the inner product becomes degenerate, much like in Figure 2.5.
The function approximation problem lacks this property because en-
larging V to include f will mean the optimal solution is g = f no matter
how close the inner product is to being degenerate. Since the solution
of the function approximation problem does not Respect Topology it
is unlikely RKHS theory will be of assistance. (It is irrelevant that the
space used in Example 3.1 is not a RKHS; the function approximation
problem could have been posed equally well in a genuine RKHS.)

No theory is a panacea for all problems. RKHS theory has broad
but not universal applicability.
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3.2 Topological Aspects of Inner Product Spaces

Reproducing kernel Hilbert spaces have additional properties that more
general Hilbert spaces and other inner product spaces do not necessarily
enjoy. These properties were chosen to make RKHSs behave more like
finite-dimensional spaces. Learning what can “go wrong” in infinite
dimensions helps put RKHS theory in perspective.

Some subspaces should not be drawn as sharp subspaces, as in
Figure 3.1, but as blurred subspaces denoting the existence of points
not lying in the subspace yet no more than zero distance away from
it. The blur represents an infinitesimally small region as measured by
the norm, but need not be small in terms of the vector space structure.
Every point in l2 is contained in the blur around the V in Example 3.2
despite V being a very small subspace of l2 in terms of cardinality of
basis vectors. (A Hamel basis for l2 is uncountable while a Hamel basis
for V is countable. Note that in an infinite-dimensional Hilbert space,
every Hamel basis is uncountable.)

Since the blur is there to represent the geometry coming from the
norm, the blur should be drawn as an infinitesimally small region
around V . An accurate way of depicting V ⊂ l2 in Example 3.2 is
by using a horizontal plane for V and adding a blur of infinitesimal
height to capture the rest of l2. This visually implies correctly that
there is no vector in l2 that is orthogonal to every vector in V . Any
f ∈ l2 that is not in V makes an infinitesimally small angle with V ,
for otherwise the vectors f, 2f, 3f, · · · would move further and further
away from V .

As these facts are likely to generate more questions than answers, it
is prudent to return to the beginning and work slowly towards deriving
these facts from first principles.

An inner product induces a norm, and a norm induces a topology.
It suffices here to understand a topology as a rule for determining
which sequences converge to which points. A norm coming from an
inner product determines the inner product uniquely. It is pragmatic
to think of the norm as the more dominant structure. The presence of
an inner product means the square of the norm is “quadratic”, a very
convenient property.
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Inner product spaces therefore have two structures: a vector space
structure and a norm whose square is “quadratic”. The axioms of a
normed space ensure these two structures are compatible. For example,
the triangle inequality ‖x + y‖ ≤ ‖x‖ + ‖y‖ involves both the norm
and vector addition. Nevertheless, the two structures capture different
aspects that are conflated in finite dimensions.

A norm induces a topology, and in particular, a norm determines
what sequences have what limit points. Topology is a weaker concept
than that of norm because different norms may give rise to the same
topology. In fact, in finite dimensions, every norm gives rise to the same
topology as every other norm: if xk → x with respect to one norm ‖ · ‖,
meaning ‖xk − x‖ → 0, then xk → x with respect to any other norm.

The first difference then in infinite dimensions is that different
norms can induce different topologies.

Example 3.3. Let ‖ · ‖2 denote the standard norm on l2 and let
‖x‖∞ = supi |xi| be an alternative norm. Let x(i) denote the sequence
(1
i , · · · ,

1
i , 0, 0, · · · ) whose first i2 terms are 1

i and the rest zero. Then
x(1), x(2), · · · is a sequence of elements of l2. Since ‖x(i)‖∞ = 1

i → 0, the
sequence converges to the zero vector with respect to the norm ‖ · ‖∞.
However, ‖x(i)‖2 = 1 does not converge to zero and hence x(i) does not
converge to the zero vector with respect to the norm ‖ · ‖2. The two
norms induce different topologies.

A second difference is that an infinite dimensional subspace need
not be topologically closed. A subspace V of a normed spaceW is closed
in W if, for any convergent sequence v1, v2, · · · → w, where the vi are
in V but w need only be in W , it is nevertheless the case that w is in
V . (Simply put, V is closed if every limit point of every sequence in
V is also in V .) The subspace V in Example 3.2 is not closed because
the sequence (1, 0, · · · ), (1, 1

2 , 0, · · · ), (1, 1
2 ,

1
4 , 0, · · · ) is in V but its limit

(1, 1
2 ,

1
4 ,

1
8 , · · · ) ∈ l2 is not in V .

A closed subspace can be drawn as a sharp subspace but any other
subspace should have an infinitesimal blur around it denoting the ex-
istence of elements not in the subspace but which are infinitesimally
close to it, a consequence of v1, v2, · · · → w meaning ‖vi − w‖ → 0.

In finite dimensions, if V ⊂ Rn and v1, v2, · · · is a sequence of
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elements of V converging to a point v ∈ Rn, it is visually clear from a
diagram that the limit point v must lie in V .

Lemma 3.1. Every finite-dimensional subspace V ⊂ W of an inner
product space W is closed.

Proof. Let v1, v2, · · · → w be a convergent sequence, with vi in V and
w in W . Let u1, · · · , ur be an orthonormal basis for V . Let w̃ = w −
〈w, u1〉u1 − · · · − 〈w, ur〉ur. Here, w− w̃ is the projection of w onto V .
In finite dimensions, the projection is always well-defined. Then w̃ is
orthogonal to u1, · · · , ur. By Pythagoras’ theorem, ‖w̃‖ ≤ ‖w − vi‖.
By definition, vi → w implies ‖w− vi‖ → 0, therefore, ‖w̃‖ must equal
zero, implying w lies in V .

A key ingredient in the above proof is that a vector w /∈ V can be
projected onto V and hence is a non-zero distance away from V . In
Example 3.2 though, there is no orthogonal projection of f onto V .

Lemma 3.2. Define f and V as in Example 3.2. There is no vector
f̃ ∈ V such that 〈f − f̃ , v〉 = 0 for all v ∈ V .

Proof. Let f̃ ∈ V be arbitrary. Let i be the smallest integer such that
the ith term of f̃ is zero. Then the ith term of f − f̃ is non-zero and
the inner product of f − f̃ with the element (0, · · · , 0, 1, 0, · · · , 0) ∈ V
having 1 for its ith term, is non-zero.

The space l2, as a vector space, is larger than it looks. The sequences
x(i) = (0, · · · , 0, 1, 0, · · · , 0), with the unit appearing in the ith term,
do not form a (Hamel) basis for l2. The x(i) span V in Example 3.2
but do not come close to spanning l2. The x(i) are countable in number
whereas a basis for l2 must necessarily be uncountable. This stems from
the span of a set of vectors being the vectors representable by a finite
linear combination of vectors in the set. Elements in l2 having infinitely
many non-zero terms cannot be written as finite linear combinations
of the x(i). (Since infinite summations involve taking limits, only finite
linear combinations are available in spaces with only a vector space
structure. A prime mathematical reason for introducing a topology, or
a fortiori a norm, is to permit the use of infinite summations.)
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From the norm’s perspective though, l2 is not large: any point in l2
is reachable as a limit of a sequence of points in the span of the x(i).
Precisely, (f1, f2, · · · ) ∈ l2 is the limit of (f1, 0, · · · ), (f1, f2, 0, · · · ), · · · .
This shows the norm is coarser than the vector space structure. The
vector space structure in Example 3.2 places f away from V yet the
norm places f no more than zero distance from V .

To demonstrate the phenomenon in Example 3.2 is not esoteric, the
following is a more familiar manifestation of it. Once again, the chosen
subspace V is not closed.

Example 3.4. Define C2[0, 1] as in Example 3.1, but this time take V
to be the subspace of all polynomials on the unit interval [0, 1]. Then
there is no polynomial g ∈ V that is closest to f(x) = sin(x) because f
can be approximated arbitrarily accurately on [0, 1] by including more
terms of the Taylor series approximation sin(x) = 1− x3

3! + x5

5! − · · · .

To summarise, it is sometimes possible to extend an inner product
on an infinite dimensional space V to an inner product on V ⊕ span{f}
so that there is a sequence in V converging to f . Here, f is a new vector
being added to form a larger space. The affine spaces cf + V for c ∈ R
would then be infinitesimally close to each other, crammed one on top
of the other. Similarly, l2 is obtained from the V in Example 3.2 by
adding basis vectors that are all crammed flat against V , hence the
earlier suggestion of visualising l2 as an infinitesimal blur around V .

3.3 Evaluation Functionals

Evaluation functionals play a crucial role in RKHS theory. In finite
dimensions, they went unnoticed as the linear functionals v 7→ e>i v.

Let V be a subspace of RX where X is an arbitrary set. An ele-
ment f of V is therefore a function f : X → R and can be evaluated
pointwise. This means mathematically that for any x ∈ X, there is a
function lx : V → R given by lx(f) = f(x). To become familiar with
this definition, the reader is invited to verify lx is linear.

If there is a norm on V then it can be asked whether the norm “con-
trols” the pointwise values of elements of V . The following examples
are intended to convey the concept prior to a rigorous definition.



3.3. Evaluation Functionals 33

Example 3.5. Define C2[0, 1] as in Example 3.1. Let f(x) be the tent
function given by f(x) = 8x + 4 for x ∈ [−1

2 , 0], f(x) = 4 − 8x for
x ∈ [0, 1

2 ] and f(x) = 0 otherwise. Let fi(x) = i f
(
i2(x− 1

2)
)

for
x ∈ [0, 1]. Then ‖fi‖ = 1

i decreases to zero yet fi(1
2) diverges to infinity.

No matter how small the norm is, there are elements of C2[0, 1] taking
on arbitrarily large values pointwise.

The next example uses a version of the Cauchy-Schwarz inequality:(∫ b

a
g(t) dt

)2

≤ (b− a)
∫ b

a
g(t)2 dt. (3.1)

It is valid for any real-valued a and b, not just when a < b.

Example 3.6. Let C1[0, 1] be the space of continuously differentiable
functions. (If f ∈ C1[0, 1] then f ′(x) exists and is continuous.) Define
a norm by ‖f‖2 =

∫ 1
0 f(x)2 dx +

∫ 1
0 f
′(x)2 dx. It is shown below that

maxx |f(x)| ≤ 2‖f‖. The norm controls the values of f(x) for all x.
Let c = maxx |f(x)|. By considering −f instead of f if necessary,

it may be assumed that c = maxx f(x). If f(x) ≥ c
2 for all x then

‖f‖ ≥ c
2 and thus maxx |f(x)| ≤ 2‖f‖. Alternatively, there must exist

a y ∈ [0, 1] such that f(y) = c
2 . Let x ∈ [0, 1] be such that f(x) = c.

Then 2
∫ x
y f
′(t) dt = c because f(x) = f(y)+

∫ x
y f
′(t) dt. Applying (3.1)

with g(t) = f ′(t) yields c2 ≤ 4(x− y)
∫ x
y f
′(t)2 dt, from which it follows

that c2 ≤ 4
∫ 1

0 f
′(t)2 dt, that is, ‖f‖ ≥ c

2 . Thus, maxx |f(x)| ≤ 2‖f‖.

Linear functionals, such as lx, fall into two categories, bounded and
unbounded, based on whether cx = supf∈V |lx(f)| · ‖f‖−1 is finite or
infinite. If lx is bounded then |lx(f)| ≤ cx ‖f‖ for all f , demonstrating
that the norm being small implies f(x) = lx(f) is small in magnitude.

A key requirement for V ⊂ RX to be a RKHS is for the lx to
be bounded for all x. This implies that if fn ∈ V is a sequence con-
verging in norm, meaning ‖fn − f‖ → 0, then the sequence also con-
verges pointwise, meaning fn(x) → f(x). This requirement was not
mentioned earlier because lx is automatically bounded when V is finite
dimensional.



4
Infinite-dimensional RKHSs

The finite-dimensional RKHS theory introduced earlier suggests the
general theory should take the following form. Fix an arbitrary set X.
Endow a subspace V of the function space RX with an inner product.
RKHS theory should associate with the tuple (V, 〈·, ·〉, X) a set of vec-
tors in RX that span V , that vary continuously as (V, 〈·, ·〉) changes,
and that encode the inner product on V . Furthermore, by analogy with
Definition 2.1, an appropriate set should be the vectors kx satisfying
〈f, kx〉 = f(x) for all f ∈ V and x ∈ X.

The above can be achieved with only several minor adjustments.
Requiring the span of the kx to be V is too demanding. For example,
a basis for l2 would necessarily be uncountable and cannot even be
constructed explicitly, whereas the countable set of vectors (1, 0, · · · ),
(0, 1, 0, · · · ), · · · suffices for working with l2 if taking limits is accept-
able. Although seemingly wanting to reconstruct V by taking the topo-
logical closure of the span of the kx, this would necessitate endowing
RX with a topology, and there might not be a topology on RX com-
patible with all possible choices of (V, 〈·, ·〉). Instead, the mathematical
process of completion (§4.1) can be used to achieve the same aim of
adding to the span of the kx any additional vectors that “should be”

34
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infinitesimally close to the kx. A Hilbert space is an inner product space
that is complete, hence the above can be summarised by saying RKHS
theory requires (V, 〈·, ·〉) to be a Hilbert space.

There may not exist a kx such that 〈f, kx〉 = f(x) for all f ∈ V

because the linear functional f 7→ 〈f, kx〉 is always bounded whereas
Example 3.5 showed f 7→ f(x) = lx(f) need not be bounded. Another
advantage of requiring V to be a Hilbert space is that any bounded
linear functional can be written as an inner product. (This is the Riesz
representation theorem.) Therefore, a necessary and sufficient condi-
tion for 〈f, kx〉 = f(x) to have a solution kx is for lx to be bounded.
Requiring lx to be bounded for all x ∈ X is the second requirement
RKHS theory places on (V, 〈·, ·〉).

RKHSs are similar to Euclidean spaces. A feature of Euclidean
space is the presence of coordinate functions πi : Rn → R send-
ing (x1, · · · , xn) to xi. These coordinate functions are continuous. A
RKHS replicates this: if V ⊂ RX is a RKHS, the coordinate functions
πx : V → R sending f to f(x) are continuous by definition. (Recall that
a linear functional is continuous if and only if it is bounded.)

4.1 Completions and Hilbert Spaces

If V ⊂ W is not closed (§3.2) then there are points in W not in V

but infinitesimally close to V . The closure V̄ of V in W is the union
of these infinitesimally close points and V . Perhaps a new W can be
found though for which V̄ ⊂W is not closed?

Given a normed space V , there is a unique (up to an isometric
isomorphism) normed space V̂ ⊃ V , called the completion of V , such
that every point in V̂ is infinitesimally close to V and there is no normed
space W for which V̂ ⊂ W is not closed. (Here, the norm on W must
agree with the norm on V̂ which must agree with the norm on V .) This
means there is one and only one way to enlarge V maximally by adding
infinitesimally close points. Once this is done, no more points can be
added infinitesimally close to the enlarged space V̂ .

This fact permits a refinement of the previous visualisation of a non-
closed subspace as being blurred. If V ⊂W is not closed then there are
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dents on the surface of V . Pedantically, these dents are straight line
scratches since V is a vector space. Filling in these scratches closes V
in W . Choosing a different W cannot re-open these scratches but may
reveal scratches elsewhere. The completion V̂ results from filling in all
possible scratches.

Scratches can be found without having to construct a W . A se-
quence vn in a normed space V is Cauchy if, for all ε > 0, there exists
a positive integer N such that ‖vn − vm‖ < ε whenever n,m ≥ N . Ev-
ery convergent sequence is a Cauchy sequence, and a sequence that is
Cauchy “should” converge; if a Cauchy sequence in V does not converge
then it “points” to a scratch.

Remark The distance between successive terms of a convergent se-
quence must go to zero: 1, 1

2 ,
1
3 , · · · → 0 implies | 1n −

1
n+1 | → 0. The

converse is false though: successive terms of sn = ∑n
i=1 i

−1 become in-
finitesimally close but too slowly to prevent sn from diverging to infin-
ity. Hence Cauchy imposed the stronger requirement of non-successive
terms becoming infinitesimally close.

To demonstrate that Cauchy sequences point to scratches, let vn ∈
V be a non-convergent Cauchy sequence. Enlarge V to V ⊕ span{f}
where f is a new vector. The aim is to construct a norm on V ⊕span{f}
agreeing with the norm on V and placing f precisely at the limit of the
Cauchy sequence, that is, vn → f . Extending the norm requires defining
‖cf+g‖ for all c ∈ R and g ∈ V . Since the aim is for vn → f , the obvious
choice to try is ‖cf + g‖ = limn→∞ ‖cvn + g‖. It can be shown the
proposed norm really is a norm; it satisfies the requisite axioms. That
it extends the original norm is clear; when c = 0, the new and old norms
agree. Finally, vn → f because limn ‖f−vn‖ = limn limm ‖vm−vn‖ = 0,
the last equality due to vn being Cauchy.

Once a scratch is filled in, it cannot be re-filled due to uniqueness
of limits in normed spaces. If an attempt was made to place g ∈ V ⊕
span{f, g} in the location pointed to by vn, then vn → g, yet from
above, vn → f , hence f and g must be the same point.

Textbooks explain how V is completed by creating a new space
comprising all Cauchy sequences in V then quotienting by declaring two
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Cauchy sequences as equivalent if they converge to the same limit. This
is not explained here since the description above conveys adequately
the underlying principles.

If the norm on V comes from an inner product then the norm on the
completion V̂ also comes from an inner product, that is, the completion
of an inner product space is itself an inner product space.

An inner product space that is complete (with respect to the norm
induced by the inner product) is called a Hilbert space.

A completion is needed for reconstructing V ⊂ RX from its kernelK
because in general the kernel can describe only a dense subspace of the
original space. Any space containing this dense subspace and contained
in its completion would have the same kernel. A unique correspondence
is achieved by insisting V is complete; given K, the space V is the
completion of the subspace described by K.

It would be remiss not to mention another reason Cauchy sequences
and completions are important. Completeness ensures existence of so-
lutions to certain classes of problems by preventing the solution from
having been accidentally or deliberately removed from the space.

Example 4.1. Let x(i) = (0, · · · , 0, 1, 0, · · · ) be the element of l2 having
unity as its ith term. Let f = (1, 1

2 ,
1
3 , · · · ) ∈ l2. Then f is the unique

solution in l2 to the system of equations 〈x(i), f〉 = i−1 for i = 1, 2, · · · .
Let V be a subspace of l2 omitting f but containing all the x(i), such
as the V in Example 3.2. Treating V as a vector space, there is no
solution f̃ ∈ V to 〈x(i), f̃〉 = i−1 for i = 1, 2, · · · .

If a space is complete, an existence proof of a solution typically
unfolds as follows. Assume the problem is to prove the existence of a
solution f to a differential equation. Construct a sequence of approx-
imate solutions fn by mimicking how differential equations are solved
numerically, with decreasing step size. The hope is that fn → f , but
since f cannot be exhibited explicity, it is not possible to prove fn → f

directly. Instead, fn is shown to be Cauchy and therefore, by complete-
ness, has a limit f̃ . Lastly, f̃ is verified by some limit argument to be
the solution, thus proving the existence of f = f̃ . For details, see [11].

Two examples of determining whether a space is complete are now
given. The proof that l2 is complete is quite standard and proceeds
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along the following lines. If f1, f2, · · · ∈ l2 is Cauchy then the ith term of
each fj form a Cauchy sequence of real numbers. Since the real numbers
are complete — they are the completion of the rational numbers — the
fj converge pointwise to a limit f . The norm of f can be shown to be
finite and hence f is in l2. Finally, it can be shown that ‖fi − f‖ → 0,
proving the fi have a limit in l2.

The space C2[0, 1] in Example 3.1 is not complete. This can be
seen by considering a sequence of continuous functions that better and
better approximate a square wave. The limit “should” exist but a square
wave is not a continuous function and hence does not lie in C2[0, 1].
The completion of C2[0, 1] is the space known as L2[0, 1]. Although L2
spaces are often treated as if they were function spaces, technically they
are not. A meaning cannot be ascribed to the pointwise evaluation of
a function in L2 because an element of L2 is actually an equivalence
class of functions, any two members of which may differ pointwise on a
set of measure zero. Conditions for when the completion of a function
space remains a function space are given in §4.5.

4.2 Definition of a RKHS

The following definition of a RKHS differs in two inconsequential ways
from other definitions in the literature. Normally, RKHSs over the com-
plex field are studied because every real-valued RKHS extends canon-
ically to a complex-valued RKHS. Often, the evaluation functionals
are required to be continuous whereas here they are required to be
bounded. A linear operator is bounded if and only if it is continuous.
Definition 4.1. Let X be an arbitrary set and denote by RX the vector
space of all functions f : X → R equipped with pointwise operations.
A subspace V ⊂ RX endowed with an inner product is a reproducing
kernel Hilbert space (RKHS) if V is complete and, for every x ∈ X, the
evaluation functional f 7→ f(x) = lx(f) on V is bounded.

The kernel of a RKHS exists and is unique.
Definition 4.2. If V ⊂ RX is a RKHS then its kernel is the function
K : X ×X → R satisfying 〈f,K(·, y)〉 = f(y) for all f ∈ V and y ∈ X.
Here, K(·, y) denotes the function x 7→ K(x, y) and is an element of V .
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If V is a subspace of RX where X = {1, · · · , n} then finite dimen-
sionality implies it is complete and its evaluation functionals bounded.
Thus, V is a RKHS by Definition 4.1. The kernel in Definitions 4.2
and 2.1 are equivalent: K(i, j) = Kij .

Remark The set X in Definition 4.1 is arbitrary. It need not have a
topology and, in particular, there are no continuity requirements on
the elements of V or the kernel K.

4.3 Examples of RKHSs

Examples of RKHSs can be found in [32, 10, 3, 30], among other places.

Example 4.2 (Paley-Wiener Space). Let V consist of bandlimited func-
tions f : R → R expressible as f(t) = 1

2π
∫ a
−a F (ω)eωt dω where

F (ω) is square-integrable. Endow V with the inner product 〈f, g〉 =∫∞
−∞ f(t)g(t) dt. Then V is a RKHS with kernel [77, 38]

K(t, τ) = sin(a(t− τ))
π(t− τ) . (4.1)

Using the Fourier transform and its inverse, the kernel (4.1) can be
derived as follows from the requirement 〈f,K(·, τ)〉 = f(τ).

f(τ) = 1
2π

∫ a

−a

(∫ ∞
−∞

f(t)e−ωt dt
)
eωτ dω

=
∫ ∞
−∞

f(t)
( 1

2π

∫ a

−a
eω(τ−t) dω

)
dt

=
∫ ∞
−∞

f(t)
( 1

2π
2

τ − t
sin(a(τ − t))

)
dt

=
∫ ∞
−∞

f(t)K(t, τ) dt.

Completeness of V in Example 4.2 can be proven essentially as follows.
If fn ∈ V is a Cauchy sequence then its Fourier transform Fn is Cauchy
too. Therefore, Fn converges to a square-integrable function F and
f(t) = 1

2π
∫ a
−a F (ω)eωt dω is in V . It can be verified fn → f .
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Example 4.3. Let V consist of functions of the form f : [0, 1] → R
where f(t) is absolutely continuous, its derivative f ′(t) (which exists
almost everywhere) is square-integrable, and f(0) = 0. Then V is a
RKHS when endowed with the inner product 〈f, g〉 =

∫ 1
0 f
′(t)g′(t) dt.

The associated kernel is K(t, s) = min{t, s}.

Readers may recognise K(t, s) = min{t, s} as the covariance func-
tion of a Wiener process. If g(t) = K(t, s) then g′(t) = 1 when t < s

and g′(t) = 0 when t > s. Therefore,

〈f,K(·, s)〉 =
∫ s

0
f ′(t) dt = f(s).

Despite this primer focusing on real-valued functions, the following
classic example of a RKHS comprises complex-valued functions.

Example 4.4 (Bergman Space). Let S = {z ∈ C | |z| < 1} denote
the unit disk in the complex plane. Let V be the vector space of all
analytic and square-integrable functions f : S → C. Equip V with the
inner product 〈f, g〉 =

∫
S f(z)g(z) dz. Then V is a RKHS with kernel

K(z, w) = 1
π

1
(1− zw̄)2 . (4.2)

The above is an example of a Bergman space and its associated ker-
nel. Choosing domains other than the unit disk produce other Bergman
spaces and associated Bergman kernels [8]. (Generally the Bergman
kernel cannot be determined explicitly though.)

4.4 Basic Properties

The fundamental property of RKHSs is the bijective correspondence
between RKHSs and positive semi-definite functions: the kernel of a
RKHS is positive semi-definite and every positive semi-definite function
is the kernel of a unique RKHS [3].

A symmetric function K : X × X → R is positive semi-definite
(equivalently, of positive type [45]) if, ∀r ≥ 1, ∀c1, · · · , cr ∈ R,
∀x1, · · · , xr ∈ X,

r∑
i=1

r∑
j=1

cicjK(xi, xj) ≥ 0. (4.3)
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Unlike in the complex-valued case when the complex version of (4.3)
forces K to be symmetric [10], in the real-valued case, it is necessary
to insist explicitly that K be symmetric: K(x, y) = K(y, x).

The kernel of a RKHS is automatically symmetric; choosing f(y) =
K(y, x) in Definition 4.2 shows

〈K(·, x),K(·, y)〉 = K(y, x), x, y ∈ X. (4.4)

The symmetry of inner products implies K(x, y) = K(y, x), as claimed.
Confusingly, positive semi-definite functions are often referred to in

the literature as positive definite functions. The terminology adopted
here agrees with the finite-dimensional case when K is a matrix.

A number of different topologies are commonly placed on func-
tion spaces. The strong topology comes from the norm: the sequence
fn converges strongly to f if ‖fn − f‖ → 0. It converges weakly if
〈fn, g〉 → 〈f, g〉 for all g ∈ V . (This is weaker because the “rate of
convergence” can be different for different g.) Pointwise convergence
is when fn(x) converges to f(x) for all x ∈ X. In general, the point-
wise topology is unrelated to the strong and weak topologies. In a
RKHS however, strong convergence implies pointwise convergence, as
does weak convergence. Writing fn → f refers to strong convergence.

If K is the kernel of V ⊂ RX , let V0 = span{x 7→ K(x, y) | y ∈
X}. In words, V0 is the space spanned by the functions K(·, y) as
y ranges over X. Clearly V0 ⊂ V . In the finite-dimensional case, V0
would equal V . In general, V0 is only dense in V . Any f ∈ V can be
approximated arbitrarily accurately by finite linear combinations of the
K(·, y). Moreover, V is the completion of V0 and hence can be recovered
uniquely from V0, where the inner product on V0 is uniquely determined
by (4.4). Any Cauchy sequence in V0 converges pointwise to an element
of the RKHS V . (It converges strongly by definition of completion, and
strong convergence in a RKHS implies pointwise convergence.)

Remark Proofs have been omitted partly because they can be found
in more traditional introductory material, including [3, 30, 59], and
partly because the above results should not be surprising once finite-
dimensional RKHSs are understood.
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4.5 Completing a Function Space

If V is incomplete but meets the other conditions in Definition 4.1, a
naive hope is for the completion of V to be a RKHS. This hope is close
to the mark: the completion of V might not be a function space on X
but can be made into a function space on a set larger than X.

First a subtlety about completions. Although it is common to speak
of the completion V̂ of a normed space V , and to think of V as a subset
of V̂ , it is more convenient to refer to any normed spaceW as a version
of the completion of V , or simply, the completion of V , provided three
conditions are met: V can be identified with a subspace V ′ ⊂W (that
is, V and V ′ are isometrically isomorphic); every Cauchy sequence in
V ′ converges to an element of W ; every element of W can be obtained
in this way. The usual construction of V̂ produces a quotient space of
Cauchy sequences, where V is identified with the set V ′ ⊂ V̂ consisting
of (equivalence classes of) Cauchy sequences converging to an element
of V . The consequence for RKHS theory is that even though V ⊂ RX

is a function space, the usual construction produces a completion V̂

whose elements are not functions.
Whether there exists a version of the completion that is a subset

of RX will be addressed in two parts. Assuming a RKHS completion
exists, a means for constructing it will be derived, then necessary and
sufficient conditions will be found for the RKHS completion to exist.

Assume V0 ⊂ RX has a completion V ⊂ RX that is a RKHS con-
taining V0. Let fn be a Cauchy sequence in V0. Its limit f can be
found pointwise: f(x) = 〈f,K(·, x)〉 = limn〈fn,K(·, x)〉 = limn fn(x).
Hence V can be reconstructed as the set of all functions on X that are
pointwise limits of Cauchy sequences in V0.

This construction can fail in two ways to produce a completion of
an arbitrary V0 ⊂ RX . The pointwise limit might not exist, or the
pointwise limit might be the same for Cauchy sequences with distinct
limits. Being in a vector space, the latter is equivalent to the existence
of a Cauchy sequence fn not converging to zero, meaning limn ‖fn‖ 6= 0,
but whose pointwise limit is zero: fn(x)→ 0 for x ∈ X.

Proposition 4.1. An arbitrary inner product space V0 ⊂ RX has a
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RKHS completion V , where V0 ⊂ V ⊂ RX , if and only if

1. the evaluation functionals on V0 are bounded;

2. if fn ∈ V0 is a Cauchy sequence converging pointwise to zero then
‖fn‖ → 0.

Proof. Assume V exists. Condition (1) holds because the evaluation
functionals on V are bounded. If fn ∈ V0 is Cauchy then fn → f for
some f in V . Since strong convergence implies pointwise convergence,
f(x) = limn fn(x) for all x ∈ X. Thus, if fn converges pointwise to zero
then its strong limit f must be zero, in which case ‖fn‖ = ‖f−fn‖ → 0,
showing condition (2) holds.

Conversely, assume (1) and (2) hold. Let fn ∈ V0 be Cauchy. The
evaluation functionals being bounded implies fn(x) is Cauchy for each
x ∈ X, hence f(x) = limn fn(x) exists. Let V be the set of all such
pointwise limits f . Consider endowing V with a norm satisfying ‖f‖ =
limn ‖fn‖ where fn is a Cauchy sequence converging pointwise to f .
Condition (2) ensures different Cauchy sequences converging pointwise
to the same limit yield the same norm: if fn(x) → f(x) and gn(x) →
f(x) then fn(x) − gn(x) → 0, hence |‖fn‖ − ‖gn‖| ≤ ‖fn − gn‖ → 0.
Omitted are the routine proofs showing ‖ · ‖ satisfies the axioms of
a norm and the parallelogram law, hence giving V an inner product
agreeing with the original inner product on V0 ⊂ V .

To verify V is the completion of V0, let fn ∈ V0 be Cauchy, with
pointwise limit f ∈ V . The sequence fm − fn in m is a Cauchy se-
quence in V0 converging pointwise to f−fn. Therefore, limn ‖f−fn‖ =
limn limm ‖fm − fn‖ = 0, proving the pointwise limit of a Cauchy se-
quence in V0 is also the strong limit. Therefore, any f ∈ V can be
written as a pointwise limit and hence as a strong limit of a Cauchy
sequence in V0, and any Cauchy sequence in V0 converges pointwise
and hence in the strong limit to an element of V .

The following example is taken from [3, pp. 349–350] and shows con-
dition (2) in the above proposition is not automatically true. Complex-
valued functions are used because analytic functions are better behaved
than real-analytic functions.
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Define S and 〈·, ·〉 as in Example 4.4 and let ‖ · ‖ denote the norm
induced from the inner product. The sequence an = 1−(1

2)n belongs to
S. The function (known as a Blaschke product) f(z) = ∏∞

n=1
an−z
1−anz is

analytic and bounded on S. It satisfies f(an) = 0 for all n. (An analytic
function vanishing on a convergent set of points need itself only be zero
if the limit point is within the domain of definition. Here, the domain
is S and an → 1 /∈ S.) There exists a sequence of polynomials fn(z) for
which limn→∞ ‖fn − f‖ = 0.

These ingredients are assembled into an example by defining X =
{a1, a2, · · · } ⊂ S and taking V0 to be the restriction to X of all polyno-
mials p : S → C, keeping the above norm. The fn above are a Cauchy
sequence of polynomials on S and a fortiori on X. Pointwise they con-
verge to zero: fn(x)→ f(x) = 0 for x ∈ S. However, ‖fn‖ → ‖f‖ 6= 0.
Condition (2) in Proposition 4.1 is not met.

Put simply, X did not contain enough points to distinguish the
strong limit of the Cauchy sequence fn from the zero function. In this
particular example, enlarging X to contain a sequence and its limit
point would ensure condition (2) is met.

This principle holds generally. Assume V0 ⊂ RX fails to meet con-
dition (2). Augment X to become X ′ = X t V̂ , the disjoint union of X
and the completion V̂ of V0. Extend each f ∈ V0 to a function f̃ ∈ RX′

by declaring f̃(x) = f(x) if x ∈ X and f̃(x) = 〈f, x〉 if x ∈ V̂ . (The
inner product is the one on V̂ , and f ∈ V0 is identified with its corre-
sponding element in V̂ .) Let V ′0 be the image of this linear embedding
f 7→ f̃ of V0 into RX′ . The inner product on V0 gets pushed forwards
to an inner product on V ′0 , that is, 〈f̃ , g̃〉 is defined as 〈f, g〉. To show
condition (2) of Proposition 4.1 is met, let f̃n ∈ V ′0 be a Cauchy se-
quence converging pointwise to zero. Then f̃n(x) → 0 for all x ∈ X ′,
and in particular, 〈fn, g〉 → 0 for all g ∈ V̂ . This implies f = 0 where
f ∈ V̂ is the limit of fn. Therefore, ‖fn‖ → ‖f‖ = 0, as required.

4.6 Joint Properties of a RKHS and its Kernel

The correspondence between a RKHS V ⊂ RX and its kernelK induces
a correspondence between certain properties of V and of K. Modifying
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or combining RKHSs to form new ones can translate into familiar op-
erations on the corresponding kernels. A small selection of examples is
presented below.

4.6.1 Continuity

If X is a metric space then it can be asked whether all the elements of
a RKHS V ⊂ RX are continuous. Since K(·, y) is an element of V , a
necessary condition is for the functions x 7→ K(x, y) to be continuous
for all y ∈ X. An arbitrary element of V though is a limit of a Cauchy
sequence of finite linear combinations of the K(·, y). An extra condition
is required to ensure this limit is continuous.

Proposition 4.2. The elements of a RKHS V ⊂ RX are continuous,
where X is a metric space, if and only if

1. x 7→ K(x, y) is continuous for all y ∈ X; and

2. for every x ∈ X there is a radius r > 0 such that y 7→ K(y, y) is
bounded on the open ball B(x, r).

Proof. See [10, Theorem 17].

The necessity of the second condition is proved by assuming there
is an x ∈ X and a sequence xn ∈ B(x, 1

n) satisfying K(xn, xn) ≥ n. The
functions K(·, xn) grow without limit: ‖K(·, xn)‖ = K(xn, xn) → ∞.
By a corollary of the Banach-Steinhaus theorem, a weakly convergent
sequence is bounded in norm, therefore, there exists a g ∈ V such that
〈g,K(·, xn)〉9 〈g,K(·, x)〉. This g is not continuous: g(xn) 9 g(x).

4.6.2 Invertibility of Matrices

Equation (4.3) asserts the matrix Aij = K(xi, xj) is positive semi-
definite. If this matrix A is singular then there exist constants ci, not



46 Infinite-dimensional RKHSs

all zero, such that (4.3) is zero. Since
r∑
i=1

r∑
j=1

cicjK(xi, xj) =
r∑
i=1

r∑
j=1

cicj〈K(·, xj),K(·, xi)〉

=
〈

r∑
j=1

cjK(·, xj),
r∑
i=1

ciK(·, xi)
〉

=
∥∥∥∥∥
r∑
i=1

ciK(·, xi)
∥∥∥∥∥

2

,

the matrix A is non-singular if and only if ∑r
i=1 ciK(·, xi) = 0 im-

plies c1 = · · · = cr = 0. Now, ∑r
i=1 ciK(·, xi) = 0 if and only if∑r

i=1 cif(xi) = 0 for all f ∈ V , where V is the RKHS whose kernel
is K. Whenever V is sufficiently rich in functions, there will be no
non-trivial solution to ∑r

i=1 cif(xi) = 0 and every matrix of the form
Aij = K(xi, xj) is guaranteed to be non-singular. For example, since
the corresponding RKHS contains all polynomials, the kernel (4.2) is
strictly positive, and for any collection of points x1, · · · , xr in the unit
disk, the matrix Aij = (1− xix̄j)−2 is non-singular.

4.6.3 Restriction of the Index Set

If V is a RKHS of functions on the interval [0, 2] then a new space V ′ of
functions on [0, 1] is obtained by restricting attention to the values of
the functions on [0, 1]. Since two or more functions in V might collapse
to the same function in V ′, the norm on V does not immediately induce
a norm on V ′. Since a kernel K on X restricts to a kernel K ′ on X ′, it
is natural to ask if there is a norm on V ′ such that K ′ is the kernel of
V ′. (The norm would have to come from an inner product.)

When interpolation problems are studied later, it will be seen that
K(·, x) solves the one-point interpolation problem; it is the function of
smallest norm satisfying f(x) = K(x, x). This suggests the norm of f
should be the smallest norm of all possible functions in V collapsing to
f . This is precisely the case and is now formalised.

If X ′ ⊂ X then any f : X → R restricts to a function f |X′ : X ′ → R
given by f |X′(x) = f(x) for x ∈ X ′. If V ⊂ RX is a RKHS then a
new space V ′ ⊂ RX′ results from restricting each element of V to X ′.
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Precisely, V ′ = {f |X′ | f ∈ V }. Define on V ′ the norm

‖f‖ = inf
g∈V
g|X′=f

‖g‖. (4.5)

Remark In (4.5), inf can be replaced by min because V is complete.
A kernel K : X × X → R restricts to a kernel K ′ : X ′ × X ′ → R

where K ′(x, y) = K(x, y) for x, y ∈ X ′. As proved in [3, p. 351] and [10,
Theorem 6], the kernel of V ′ is K ′.

4.6.4 Sums of Kernels

If K1 and K2 are kernels on the same set X then K = K1 + K2 is
positive semi-definite and hence a kernel of a RKHS V ⊂ RX . There
is a relatively straightforward expression for V in terms of the RKHSs
V1 and V2 whose kernels are K1 and K2 respectively.

The space itself is V = V1 ⊕ V2, that is,

V = {f1 + f2 | f1 ∈ V1, f2 ∈ V2}. (4.6)

The norm on V is given by a minimisation:

‖f‖2 = inf
f1∈V1
f2∈V2

f1+f2=f

‖f1‖2 + ‖f2‖2. (4.7)

The three norms in (4.7) are defined on V , V1 and V2, in that order.
Proofs of the above can be found in [3, p. 353] and [10, Theorem 5].

If there is no non-zero function belonging to both V1 and V2 then
f ∈ V uniquely decomposes as f = f1+f2. To see this, assume f1+f2 =
f ′1 + f ′2 with f1, f

′
1 ∈ V1 and f2, f

′
2 ∈ V2. Then f1− f ′1 = f2− f ′2. As the

left-hand side belongs to V1 and the right-hand side to V2, the assertion
follows. In this case, (4.7) becomes ‖f‖2 = ‖f1‖2+‖f2‖2, implying from
Pythagoras’ theorem that V1 and V2 have been placed at right-angles
to each other in V .



5
Geometry by Design

The delightful book [44] exemplifies the advantages of giving a geometry
to an otherwise arbitrary collection of points {pt | t ∈ T}. Although this
can be accomplished by a recipe for evaluating the distance d(pt, pτ )
between pairs of points, a metric space lacks the richer structure of
Euclidean space; linear operations are not defined, and there is no inner
product or coordinate system.

5.1 Embedding Points into a RKHS

Assume a recipe has been given for evaluating 〈pt, pτ 〉 that satisfies the
axioms of an inner product. If the pt are random variables then the
recipe might be 〈pt, pτ 〉 = E[ptpτ ]. It is not entirely trivial to construct
an inner product space and arrange correctly the pt in it because the
recipe for 〈pt, pτ 〉 may imply linear dependencies among the pt. It is
not possible to take by default {pt | t ∈ T} as a basis for the space.

RKHSs have the advantage of not requiring the kernel to be non-
singular. The set {pt | t ∈ T} can serve directly as an “overdetermined
basis”, as now demonstrated. Note T need not be a finite set.

Define K(τ, t) = 〈pt, pτ 〉. If the inner product satisfies the axioms

48
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required of an inner product then K : T × T → R is positive semi-
definite and therefore is the kernel of a RKHS V ⊂ RT . Just like an
element of R2 can be drawn as a point and given a label, interpret the
element K(·, t) of V as a point in RT labelled pt. In this way, the pt
have been arranged in V . They are arranged correctly because

〈K(·, t),K(·, τ)〉 = K(τ, t) = 〈pt, pτ 〉. (5.1)

Not only have the points pt been arranged correctly in the RKHS,
they have been given coordinates: since pτ is represented by K(·, τ),
its tth coordinate is 〈K(·, τ),K(·, t)〉 = K(t, τ). This would not have
occurred had the points been placed in an arbitrary Hilbert space, and
even if the Hilbert space carried a coordinate system, the assignment
of coordinates to points pt would have been ad hoc and lacking the
reproducing property.

Even if the pt already belong to a Hilbert space, embedding them
into a RKHS will give them a pointwise coordinate system that is
consistent with taking limits (i.e., strong convergence implies pointwise
convergence). See §6.2 and §7 for examples of why this is beneficial.

Let H be a Hilbert space, {pt | t ∈ T} ⊂ H a collection of vectors
and V ⊂ RT the RKHS whose kernel is K(τ, t) = 〈pt, pτ 〉. Then V is a
replica of the closure U of the subspace in H spanned by the pt; there
is a unique isometric isomorphism φ : U → V satisfying φ(pt) = K(·, t).
An isometric isomorphism preserves the linear structure and the inner
product. In particular, 〈φ(p), φ(q)〉 = 〈p, q〉. The tth coordinate of u ∈
U is defined to be the tth coordinate of φ(u), namely, 〈φ(u),K(·, t)〉.

5.2 The Gaussian Kernel

Points in Rn can be mapped to an infinite-dimensional RKHS by declar-
ing the inner product between x, y ∈ Rn to be

〈x, y〉 = exp
{
−1

2‖x− y‖
2
}
. (5.2)

As in §5.1, the RKHS is defined via its kernel K(x, y) = 〈x, y〉, called
a Gaussian kernel. The point x ∈ Rn is represented by the element
K(·, x) in the RKHS, a Gaussian function centred at x.
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The geometry described by an inner product is often easier to un-
derstand once the distance between points has been deduced. Since
〈K(·, x),K(·, x)〉 = K(x, x) = 1, every point x ∈ Rn is mapped to a unit
length vector in the RKHS. The squared distance between x, y ∈ Rn is

〈K(·, x)−K(·, y),K(·, x)−K(·, y)〉
= 〈K(·, x),K(·, x)〉 − 2〈K(·, x),K(·, y)〉+ 〈K(·, y),K(·, y)〉
= K(x, x)− 2K(x, y) +K(y, y) (5.3)

= 2
(

1− exp
{
−1

2‖x− y‖
2
})

. (5.4)

As y moves further away from x in Rn, their representations in the
infinite-dimensional RKHS also move apart, but once ‖x−y‖ > 3, their
representations are close to being as far apart as possible, namely, the
representations are separated by a distance close to 2.

Although the maximum straight-line distance between two repre-
sentations is 2, a straight line in Rn does not get mapped to a straight
line in the RKHS. The original geometry of Rn, including its linear
structure, is completely replaced by (5.2). The ray t 7→ tx, t ≥ 0, is
mapped to the curve t 7→ K(·, tx). The curve length between K(·, 0)
and K(·, tx) is

lim
N→∞

N−1∑
i=0

∥∥∥∥K (
·, i+ 1

N
tx

)
−K

(
·, i
N
tx

)∥∥∥∥
= lim

N→∞

N−1∑
i=0

√
2
(

1− exp
{
− 1

2N2 ‖tx‖
2
})

= lim
N→∞

√
2N2

(
1−

[
1− 1

2N2 ‖tx‖
2 + · · ·

])
= t‖x‖.

Calculations similar to the above can be carried out for any given
kernel K, at least in theory.



6
Applications to Linear Equations and

Optimisation

Linearly constrained norm-minimisation problems in Hilbert spaces
benefit from the norm coming from an inner product. The inner prod-
uct serves as the derivative of the cost function, allowing the minimum-
norm solution to be expressed as the solution to a linear equation. This
equation, known as the normal equation, can be written down directly
as an orthogonality constraint, as shown on the right in Figure 3.1.
Whenever the constraint set forms a closed subspace, a minimum-norm
solution is guaranteed to exist [41].

Reproducing kernel Hilbert spaces have additional benefits when
the constraints are of the form f(x) = c because the intersection of a
finite or even infinite number of such pointwise constraints is a closed
affine space. The minimum-norm solution is guaranteed to exist and is
expressible using the kernel of the RKHS.

Example 2.6 showed mathematically that the kernel features in
minimum-norm problems. A simple geometric explanation comes from
the defining equation 〈f,K(·, x)〉 = f(x) implying K(·, x) is orthogonal
to every function f having f(x) = 0. This is precisely the geometric con-
straint for K(·, x) to be a function of smallest norm satisfying f(x) = c.
The actual value of c is determined by substituting f = K(·, x) into
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the defining equation, yielding the self-referential f(x) = K(x, x).

6.1 Interpolation Problems

The interpolation problem asks for the function f ∈ V ⊂ RX of min-
imum norm satisfying the finite number of constraints f(xi) = ci for
i = 1, · · · , r. Assuming for the moment there is at least one function
in V satisfying the constraints, if V is a RKHS with kernel K then a
minimum-norm solution exists.

Let U = {f ∈ V | f(xi) = ci, i = 1, · · · , r} and W = {g ∈ V |
g(xi) = 0, i = 1, · · · , r}. The subspace W is closed because g(x) = 0
is equivalent to 〈g,K(·, x)〉 = 0 and the collection of vectors orthogo-
nal to a particular vector forms a closed subspace. (Equivalently, the
boundedness of evaluation functionals implies they are continuous and
the inverse image of the closed set {0} under a continuous function is
closed.) Being the intersection of a collection of closed sets,W is closed.
Thus U is closed since it is a translation of W , and a minimum-norm
solution f ∈ U exists because U is closed (§4.1).

A minimum-norm f ∈ U must be orthogonal to all g ∈W , for else
f + εg ∈ U would have a smaller norm for some ε 6= 0. Since W is
the orthogonal complement of O = span{K(·, x1), · · · ,K(·, xr)}, and
O is closed, O is the orthogonal complement ofW . The minimum-norm
solution must lie in O.

The minimum-norm f can be found by writing f = ∑r
j=1 αjK(·, xj)

and solving for the scalars αj making f(xi) = ci. If no such αj exist
then U must be empty. Since f(xi) = ∑r

j=1 αjK(xi, xj), the resulting
linear equations can be written in matrix form as Aα = c where Aij =
K(xi, xj) and the α and c are vectors containing the αj and ci in order.
A sufficient condition for A to be non-singular is for the kernel to be
strictly positive definite (§4.6.2). See also [38, 77].

It is remarked that the Representer Theorem in statistical learning
theory is a generalisation of this basic result.

Example 4.2 demonstrates that certain spaces of bandlimited sig-
nals are reproducing kernel Hilbert spaces. Reconstructing a bandlim-
ited signal from discrete-time samples can be posed as an interpolation
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problem [77].

6.2 Solving Linear Equations

If the linear equation Ax = b has more than one solution, the Moore-
Penrose pseudo-inverse A+ of A finds the solution x = A+b of minimum
norm. The involvement of norm minimisation suggests RKHS theory
might have a role in solving infinite-dimensional linear equations.

The minimum-norm solution is that which is orthogonal to the null-
space of A. The r rows of A are orthogonal to the null-space, therefore,
the required solution is that which is expressible as a linear combination
of the rows of A. This motivates writing Ax = b as 〈x, ai〉 = bi, i =
1, · · · , r, where ai is the ith row of A, and looking for a solution x lying
in U = span{a1, · · · , ar}.

If U was a RKHS and the ai of the form K(·, i) then 〈x, ai〉 = bi
would be an interpolation problem (§6.1). This form can always be
achieved by embedding U into a RKHS (§5.1) because the embed-
ding φ sends ai to K(·, i) and preserves the inner product: 〈x, ai〉 =
〈φ(x), φ(ai)〉 = 〈φ(x),K(·, i)〉. The solution to 〈φ(x),K(·, i)〉 = bi is
φ(x) = b and hence the solution to 〈x, ai〉 = bi is x = φ−1(b).

Theorem 6.1. Let H be a Hilbert space and {at | t ∈ T} ⊂ H a
collection of vectors in H. Denote the closure of the span of the at by
U . The equations 〈x, at〉 = bt for t ∈ T have a solution x ∈ U if and
only if the function t 7→ bt is an element of the RKHS V ⊂ RT whose
kernel K : T × T → R is K(s, t) = 〈at, as〉. If a solution x in U exists
then it is unique and has the smallest norm out of all solutions x in
H. Moreover, x = φ−1(b) where b(t) = bt and φ : U → V is the unique
isometric isomorphism sending at to K(·, t) for t ∈ T .

Proof. Follows from the discussion above; see also [10, Theorem 42].

The H-norm of the solution x equals the V -norm of b because φ
in Theorem 6.1 preserves the norm. Sometimes this knowledge suffices.
Otherwise, in principle, x can be found by expressing b as a linear
combination of the K(·, t). If b = ∑

k αkK(·, tk) then x = φ−1(b) =
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∑
k αkatk by linearity of φ. More generally, limits of linear combina-

tions can be used, including integrals and derivatives of K(·, t); see [32,
Section III-B] or [10, Theorem 43]. For an alternative, see Theorem 6.2.

Example 6.1. The equation Ax = b can be written as 〈x, ai〉 = bi
with respect to the Euclidean inner product. Then K(i, j) = 〈aj , ai〉.
In matrix form, K = AA>. The map φ sending ai = A>ei to K(·, i) =
AA>ei is φ(x) = Ax. It is more useful though to think of φ as sending
A>v to AA>v for arbitrary v because then φ−1 is seen to send AA>v to
A>v. Expressing b as a linear combination of the K(·, i) means finding
the vector α such that b = AA>α. Assuming AA> is invertible, α =
(AA>)−1b. As b = (AA>)(AA>)−1α and φ−1 changes the leading AA>
to A>, x = φ−1(b) = A>(AA>)−1b.

The kernel K = AA> in the above example corresponds to the
inner product 〈b, c〉 = c>(AA>)−1b by the observation in Example 2.1.
The solution x = A>(AA>)−1b also involves (AA>)−1, suggesting x
can be written using the inner product of the RKHS. This is pursued
in §6.2.1.

Example 6.2. Consider the integral transform

f(t) =
∫
Z
F (z)h(z, t) dz, t ∈ T, (6.1)

taking a function F ∈ RZ and returning a function f ∈ R>. Regularity
conditions are necessary for the integral to exist: assume F (·) and h(·, t)
for all t ∈ T are square-integrable, as in [59, Chapter 6]. Let H be the
Hilbert space L2(Z) of square-integrable functions on Z. Then (6.1)
becomes 〈F, h(·, t)〉 = f(t) for t ∈ T . Define K(s, t) = 〈h(·, t), h(·, s)〉 =∫
Z h(z, s)h(z, t) dz and let V ⊂ R> be the associated RKHS. Then (6.1)
has a solution F if and only if f ∈ V .

6.2.1 A Closed-form Solution

The solution x = A>(AA>)−1b to Ax = b in Example 6.1 can be
written as xj = 〈b, cj〉 where cj is the jth column of A and the inner
product comes from the kernelK = AA>, that is, 〈b, c〉 = c>(AA>)−1b.
Indeed, 〈b, cj〉 = 〈b, Aej〉 = e>j A

>(AA>)−1b = e>j x = xj , as claimed.
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Similarly, under suitable regularity conditions, a closed-form solu-
tion to (6.1) can be found as follows. Let V ⊂ RX be the RKHS with
K(s, t) =

∫
h(z, t)h(z, s) dz as its kernel. Any f ∈ V therefore satisfies

f(t) = 〈f,K(·, t)〉

=
〈
f,

∫
h(z, t)h(z, ·) dz

〉
=
∫
h(z, t) 〈f, h(z, ·)〉 dz

=
∫
h(z, t)F (z) dz,

(6.2)

showing the integral equation f(t) =
∫
F (z)h(z, t) dz has F (z) =

〈f, h(z, ·)〉 as a solution. This derivation does not address whether the
solution has minimum norm; sometimes it does [59, Chapter 6].

The following novel derivation builds on the idea in (6.2) and
culminates in Theorem 6.2. It relies on the concept of a Parseval
frame [28, 52]. A collection of vectors cs ∈ V is a Parseval frame for
V ⊂ RT if and only if b = ∑

s〈b, cs〉cs for all b ∈ V . By [52, Theo-
rem 3.12], cs is a Parseval frame for V if and only if K = ∑

s csc
>
s .

This condition extends the second definition in Definition 2.1 because
an orthonormal basis is a fortiori a Parseval frame. Note that a so-
lution to 〈x, at〉 = bt can be found analogous to (6.2) by substi-
tuting K = ∑

s csc
>
s into bt = 〈b,Ket〉 in the particular case when

T = {1, 2, · · · , n}. A more general strategy is sought though.
The difficulty of solving φ(x) = b in Theorem 6.1 using the kernel

directly is having to express b as a linear combination of the K(·, t).
Expressing b as a linear combination of a Parseval frame cs though is
trivial: b = ∑

s〈b, cs〉cs. For this to be useful, it must be possible to
evaluate φ−1(cs). It turns out that the choice cs = ψ(vs) achieves both
objectives, where vs is an orthonormal basis for H and ψ : H → RT is
the map sending x to b where bt = 〈x, at〉.

The map φ : U → V in Theorem 6.1 is the restriction of ψ to U .
Denote by P the orthogonal projection onto U . If b = ψ(x) for some
x ∈ H then the minimum-norm solution of ψ(x̂) = b is x̂ = P (x).
Equivalently, φ−1(ψ(x)) = P (x). Moreover, φ(P (x)) = ψ(x).

The inverse image φ−1(cs) of cs = ψ(vs) can be deduced from the
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following calculation, valid for any x ∈ H.

φ−1(ψ(x)) =
∑
s

〈P (x), vs〉vs

=
∑
s

〈P (x), P (vs)〉vs

=
∑
s

〈φ(P (x)), φ(P (vs))〉vs

=
∑
s

〈ψ(x), ψ(vs)〉vs.

(6.3)

In fact, this shows not only how φ−1(cs) can be found, but that the
minimum-norm solution x̂ to ψ(x) = b is given by

x̂ =
∑
s

〈b, cs〉vs, cs = ψ(vs). (6.4)

Equivalently, x is found “elementwise” by 〈x, vs〉 = 〈b, cs〉. Note that
b = ∑

s〈b, cs〉cs, therefore, x is obtained by using the same linear com-
bination but with cs replaced by its preimage vs. Even though the vs
need not lie in U , the linear combination of them does.

That the cs form a Parseval frame only enters indirectly to guide
the derivation (6.3). It helps explain why it works. For completeness,
the following verifies the cs form a Parseval frame.

e>t

(∑
s

csc
>
s

)
eτ =

∑
s

(e>t cs)(e>τ cs)

=
∑
s

〈vs, at〉〈vs, aτ 〉

=
〈∑

s

〈at, vs〉vs, aτ

〉
= 〈at, aτ 〉 = 〈aτ , at〉 = K(t, τ).

The above leads to the following elementary but new result.

Theorem 6.2. With notation as in Theorem 6.1, let {vs | s ∈ S} be an
orthonormal basis for H. Define cs(t) = 〈vs, at〉. The minimum-norm
solution x in Theorem 6.1 is the unique solution to 〈x, vs〉 = 〈b, cs〉.

Proof. As vs is an orthonormal basis, the solution x to 〈x, vs〉 = 〈b, cs〉 is
unique. It therefore suffices to show 〈x, vs〉 = 〈φ(x), cs〉 for x ∈ U . This
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follows from 〈x, vs〉 = 〈P (x), vs〉 = 〈x, P (vs)〉 = 〈φ(x), φ(P (vs))〉 =
〈φ(x), cs〉 where P is projection onto U . That cs = φ(P (vs)) can be
derived from cs(t) = 〈vs, P (at)〉 = 〈P (vs), at〉.

Theorem 6.2 can be used to solve numerically integral equations via
series expansions (Example 6.2). If x = ∑

s αsvs then each αs is found
by evaluating numerically the RKHS inner product 〈b, cs〉. Here, cs can
be found by evaluating an integral numerically.



7
Applications to Stochastic Processes

Parzen is credited with introducing RKHS theory into statistics [48,
49, 50, 51]. He learnt about RKHSs by necessity, as a graduate stu-
dent, back when the theory was in its infancy, because it was his pre-
scribed minor thesis topic [46]. A decade later, Kailath demonstrated
to the signal processing community the relevance of RKHS theory in
a series of lucid papers concerning detection, filtering and parameter
estimation [32, 33, 16, 17, 35]. Kailath and Parzen were colleagues at
Stanford [46].

Despite Hilbert spaces being linear spaces, RKHS theory is not
confined to studying linear estimation theory; a clever use of charac-
teristic functions leads to a RKHS theory for optimal nonlinear esti-
mators [29, 36, 16, 68]. Robust estimation theory has also been consid-
ered [7].

A RKHS approach usually entails finding an expression for the ker-
nel. If this cannot be done, Kailath observes it may suffice to use a nu-
merical scheme for computing the norms of functions on a RKHS [34].

The ideas underlying the application of RKHS theory to stochas-
tic processes are presented without regard to technical considerations
(such as measurability).

58
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7.1 Detection in Finite Dimensions

Let m ∈ Rn be a known vector called the message. Let w ∈ Rn be a
realisation of Gaussian white noise, that is, w ∼ N(0, I). The detection
problem is deciding whether the received signal y ∈ Rn represents only
noise, y = w, or the message plus noise, y = m+ w.

The standard mechanism for making such a decision is the likeli-
hood ratio test. The likelihood of y being just noise is proportional to
exp{−1

2‖y‖
2} while the likelihood of y being the message plus noise is

proportional to exp{−1
2‖y −m‖

2}, where the constant of proportion-
ality is the same in both cases. The message is therefore deemed to be
present if and only if ‖y −m‖ < ‖y‖.

The test ‖y−m‖ ≶ ‖y‖ has a simple geometric explanation. Inter-
pret the case y = w as sending the zero message: y = 0 + w. In Rn,
label the point m as the message, label the origin as the zero message
and label the point y as the received signal. Since the distribution of
w is radially symmetric, the likelihood of y = s+ w is proportional to
‖y − s‖ and decays monotonically. Deciding between s = 0 and s = m

comes down to deciding whether y is closer to 0 or m.
The geometry suggests 〈y,m〉 − 1

2〈m,m〉 ≶ 0 as an equivalent for-
mulation of the likelihood ratio test, corresponding to projecting the
signal y onto the “message space” m.

Generalising to coloured noise N(0,Σ) is achieved by replacing w
by Σ 1

2w. Testing between y = Σ 1
2w and y = m + Σ 1

2w is achieved by
whitening the received signal, thus deciding between Σ− 1

2 y = w and
Σ− 1

2 y = Σ− 1
2m+ w. Specifically, the test is

〈Σ−
1
2 y,Σ−

1
2m〉 − 1

2〈Σ
− 1

2m,Σ−
1
2m〉 ≶ 0, (7.1)

assuming of course Σ is non-singular.
Intriguingly, (7.1) can be written as

〈y,m〉K −
1
2〈m,m〉K ≶ 0, (7.2)

where 〈·, ·〉K is the inner product on the RKHS whose kernel is K = Σ.
Indeed, from Example 2.1, the RKHS whose kernel is K is Rn equipped
with the inner product 〈x, y〉K = yTΣ−1x.
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The advantage of (7.2) is it can be shown to remain valid when Σ
is singular. Importantly, note that if m does not lie in range(Σ 1

2 ) =
range(Σ) then the detection problem can be solved deterministically.
Otherwise, if m is in range(Σ) then y will also lie in range(Σ), hence
(7.2) is meaningful because bothm and y will be elements of the RKHS.

The RKHS structure gives a useful link between the geometry 〈·, ·〉K
and the statistics of the noise Σ 1

2w. This manifests itself in several
ways, one of which is that the distribution of 〈Σ 1

2w, z〉K is zero-mean
Gaussian with variance 〈z, z〉K , and moreover, the correlation between
any two such Gaussian random variables is given by

E[ 〈Σ
1
2w, x〉K 〈Σ

1
2w, z〉K ] = 〈x, z〉K . (7.3)

In particular, with respect to 〈·, ·〉K , the distribution of Σ 1
2w is spher-

ically symmetric, hence the ratio test reduces to determining whether
y is closer to 0 or m with respect to the RKHS norm ‖ · ‖K .

7.2 The RKHS Associated with a Stochastic Process

A stochastic process X is a collection of random variables X(t) indexed
by a parameter t ∈ T often taken to be time. An archetypal process is
the Wiener process, described from first principles in [43], among other
introductory material. A sample path is a realisation t 7→ X(t) of X,
also known as a randomly chosen signal or waveform.

Despite RKHSs being function spaces and sample paths being func-
tions, a RKHS structure is not given to the space of all possible sam-
ple paths. Since linear filters form linear combinations of the X(t), the
Hilbert space approach [62] to filtering endows the space spanned by the
individual X(t) with the inner product 〈X(s), X(t)〉 = E[X(s)X(t)].
This inner product equates the statistical concept of conditional expec-
tation with the simpler geometric concept of projection. For example,
uncorrelated random variables are orthogonal to each other.

The RKHS approach goes one step further. The space spanned by
the X(t) has a useful geometry but no convenient coordinate system. A
point in that space is nothing more than a point representing a random
variable, whereas a point in Rn comes with n coordinates describing
the point’s precise location. In hindsight, the RKHS approach can be
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understood as giving a convenient coordinate system to the space of
random variables. (While other authors have considered a RKHS ap-
proach to be coordinate free, we argue 〈f,K(·, x)〉 is precisely the xth
coordinate of f . RKHS theory is a blend of coordinate-free geometric
reasoning with algebraic manipulations in pointwise coordinates.)

The coordinate system introduced by the RKHS approach assigns to
each random variable U the function t 7→ E[UX(t)]. The tth coordinate
is E[UX(t)]. This provides explicitly a wealth of information about U
in a form compatible with the geometry of the space.

This coordinate system comes from taking the covariance function
R(t, s) = E[X(t)X(s)], which is always positive semi-definite, to be
the kernel of a RKHS V ⊂ RT . Recall from §5 that this construction
arranges the individual points X(t) in V according to the geometry
〈X(s), X(t)〉 = E[X(s)X(t)]. Precisely, the element R(·, s) ∈ V repre-
sents the random variable X(s). The space V is the completion of the
space spanned by the R(·, s) for s ∈ T . Any (mean-square) limit U of
finite linear combinations of the X(t) can therefore be represented in V
by a limit E[UX(t)] of corresponding finite linear combinations of the
R(·, s). This map U 7→ E[UX(t)] corresponds to the isometric isometry
φ in §5.1. In other words, associated with the random variable U are
the coordinates t 7→ E[UX(t)] describing the location of the embedding
of U in the RKHS V .

While the elements of V and sample paths are both functions on T ,
the former represents the coordinates t 7→ E[UX(t)] of a random vari-
able U while the latter represents a realisation of t 7→ X(t). Especially
since the former is deterministic and the latter stochastic, there is not
necessarily any relationship between the two. Surprisingly then, several
relationships have been found for Gaussian processes. In typical cases,
the sample paths are elements of the RKHS with probability zero or
one, depending on the process itself [15, 42]. A detection problem is
non-singular if and only if the signal belongs to V [32]. (This is a man-
ifestation of the Cameron-Martin Theorem, with the RKHS V being
known as the Cameron-Martin space [13].)
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7.3 Signal Detection

Salient features of the RKHS approach to signal detection are sum-
marised below, the purpose being to add substance to the higher level
description above. Greater detail can be found in [32].

The signal detection problem is a hypothesis test for deciding be-
tween the null hypothesis that the signal X(t) is composed of just
noise — X(t) = N(t) — versus the hypothesis that a known signal
m(t) is present — X(t) = m(t) + N(t). For concreteness, t is as-
sumed to belong to the interval T = [0, 1]. The noise process N(t)
is assumed to be a zero-mean second-order Gaussian process. Its co-
variance function R(t, s) = E[N(s)N(t)] is assumed to be continu-
ous (and hence bounded) on T × T . (This is equivalent to N(t) being
mean-square continuous.) Example calculations will takeN(t) to be the
standard Wiener process [43] with N(0) = 0 and covariance function
R(t, s) = min{s, t}.

Hypothesis testing generally reduces to comparing the likelihood
ratio against a threshold [56]. Two methods for determining the likeli-
hood ratio are discussed below.

7.3.1 The Karhunen-Loéve Approach

The continuous-time detection problem has a different flavour from
the conceptually simpler discrete-time detection problem when T is a
finite set. If m(t) varies faster than a typical sample path of N(t), and
especially if m(t) contains a jump, correct detection is possible with
probability one [56]. Otherwise, if exact detection is not possible, the
continuous-time detection problem can be solved as a limit of discrete-
time detection problems; being continuous, a sample path of N(t) is
fully defined once its values at rational times t are known.

A more practical representation of N(t) using a countable number
of random variables is the Karhunen-Loéve expansion. Provided R(t, s)
is continuous on the unit square T × T , it has an eigendecomposition

R(t, s) =
∞∑
k=1

λkψk(t)ψk(s) (7.4)

where the λk ≥ 0 are the eigenvalues and the ψk are the orthonormal
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eigenfunctions defined by∫ 1

0
R(t, s)ψ(s) ds = λψ(t). (7.5)

Orthonormality imposes the extra constraint∫ 1

0
ψn(t)ψm(t) dt =

1 m = n;
0 otherwise.

This is a generalisation of the eigendecomposition of a positive semi-
definite matrix and is known as Mercer’s theorem [45].

If N(t) is the standard Wiener process then R(t, s) = min{s, t} and

ψk(t) =
√

2 sin
((
k − 1

2

)
πt
)
,

λk = 1(
k − 1

2

)2
π2
,

as verified in part by∫ 1

0
min{s, t}

√
2 sin

((
k − 1

2

)
πs
)
ds

=
√

2
[∫ t

0
s sin

((
k − 1

2

)
πs
)
ds+ t

∫ 1

t
sin
((
k − 1

2

)
πs
)
ds

]
= λk

√
2 sin

((
k − 1

2

)
πt
)
.

Note the λk decay to zero. Define

Nk =
∫ 1

0
N(t)ψk(t) dt.

The orthonormality of the ψk and N(t) having zero mean imply
E[Nk] = 0, E[N2

k ] = λk and E[NnNm] = 0 for n 6= m. Indeed,

E[NnNm] =
∫ 1

0

∫ 1

0
R(t, s)ψn(s)ψm(t) ds dt

=
∫ 1

0
λnψn(t)ψm(t) dt

=

λn m = n;
0 otherwise.
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Since N(t) is a Gaussian process, the Nk are actually independent
Gaussian random variables with zero mean and variance λk.

The Karhunen-Loéve expansion of N(t) is

N(t) =
∞∑
k=1

Nkψk(t) (7.6)

where it is simplest to interpret the right-hand side as a way of gener-
ating a Wiener process: generate Nk ∼ N(0, λk) at random then form
the summation. See [76] for a proof.

Assume the signal m(t) looks sufficiently like the noise that it too
can be represented as m(t) = ∑∞

k=1mkψk(t). Substituting this expan-
sion of m(t) into

∫ 1
0 m(t)ψn(t) dt, and recalling the orthonormality of

the ψk, shows mk =
∫ 1

0 m(t)ψk(t) dt.
Transforming the received signal X(t) in the same way leads to a

corresponding hypothesis test for distinguishing between Xk = Nk and
Xk = mk + Nk, where Xk =

∫ 1
0 X(t)ψk(t) dt. Since the λk decrease to

zero, the likelihood ratio can be approximated by using only a finite
number of the Xk. For details, see [56].

The use of (Lebesgue measure) ds in (7.5) is ad hoc [32]. Changing
it will result in a different discrete-time approximation of the detection
problem. An equivalent hypothesis test will still result, nevertheless,
avoiding an ad hoc choice is preferable. Moreover, computing an eigen-
decomposition (7.5) of R(t, s) can be difficult [32]. The RKHS approach
avoids the need for computing an eigendecomposition of R(t, s).

7.3.2 The RKHS Approach

The logarithm of the likelihood ratio of X(t) = m(t) +N(t) to X(t) =
N(t) when N(t) is a Gaussian process takes the form∫ 1

0
X(t) dH(t)− 1

2

∫ 1

0
m(t) dH(t) (7.7)

if there exists an H(t) (of bounded variation) satisfying∫ 1

0
R(t, s)dH(s) = m(t). (7.8)
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This is a consequence of a martingale representation theorem; see [55,
Theorem 2.3], [56, Proposition VI.C.2] and [76, Section 7.2] for de-
tails. In other words, the linear operator X 7→

∫ 1
0 X(t) dH(t) reduces

the signal detection problem to the one-dimensional problem of test-
ing whether a realisation of

∫ 1
0 X(t) dH(t) came from

∫ 1
0 N(t) dH(t) or∫ 1

0 m(t) +N(t) dH(t).
Directly obtaining a closed-form solution to (7.8) can be difficult.

The RKHS approach replaces this problem by the sometimes simpler
problem of computing the inner product of a particular RKHS; as dis-
cussed later, the RKHS approach leads to the mnemonic

〈X,m〉 − 1
2〈m,m〉 (7.9)

for the likelihood ratio, where the inner product is that of the RKHS
whose kernel is the covariance R(t, s). (See Example 7.2.)

Let U =
∫ 1

0 N(t) dH(t). Being the limit of certain finite linear
combinations of the N(t), it belongs to the Hilbert space (of square-
integrable random variables) generated by the N(t). Since each N(t) is
zero-mean Gaussian, so is U . Its distribution is thus fully determined
by its “coordinates” t 7→ E[UN(t)]. Since

E[UN(t)] =
∫ 1

0
E[N(s)N(t)] dH(s)

=
∫ 1

0
R(t, s) dH(s),

if the requirement (7.8) holds then U =
∫ 1

0 N(t) dH(t) satisfies

E[UN(t)] = m(t). (7.10)

The existence of an H(t) satisfying (7.8) is only a sufficient condi-
tion for the signal detection problem to be non-singular. The existence
of a random variable U , belonging to the Hilbert space generated by
the N(t) and satisfying (7.10), is both necessary and sufficient [32]. The
discrepancy arises because a U satisfying (7.10) need not be expressible
in the form U =

∫ 1
0 N(t) dH(t); see [55, p. 44] for an example.

Let V ⊂ RT be the RKHS whose kernel is the noise covariance
function R(t, s) = E[N(s)N(t)]. Recall that the Hilbert space gener-
ated by the N(t) is isometrically isomorphic to V , with U 7→ E[UN(·)]
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an isometric isomorphism. Therefore, (7.10) has a solution if and only
if m is an element of the RKHS V .

Condition (7.8) requires expressing m(t) as a linear combination of
the R(·, s), but with the caveat that the linear combination take the
form of a particular integral. The requirement that m be an element
of V is that m is the limit of finite linear combinations of the R(·, s)
where the limit is with respect to the norm on V , defined implicitly by
〈R(·, s), R(·, t)〉 = R(t, s).

If U satisfies (7.10) then the likelihood ratio can be found as follows.
Write U as U(N) to emphasise that U can be considered to be an almost
surely linear function of theN(t). The likelihood ratio is U(X)−1

2U(m).
This agrees with (7.7) if U(N) =

∫ 1
0 N(t) dH(t).

Example 7.1. With notation as above, assume m(t) = ∑
i αiR(·, si).

A solution to (7.8) is obtained by choosing H(s) to have increments
at the si of height αi. This leads to

∫ 1
0 X(t) dH(t) = ∑

i αiX(si)
and

∫ 1
0 m(t) dH(t) = ∑

i αim(si). Alternatively, let φ be the linear
isomorphism U 7→ E[UN(·)], so that (7.10) becomes φ(U) = m.
Then U(N) = φ−1(m) = ∑

i αiφ
−1(R(·, si)) = ∑

i αiN(si). Thus
U(X) = ∑

i αiX(si) and U(m) = ∑
i αim(si), resulting in the same

likelihood ratio.

A more explicit expression can be given for the second term of the
likelihood ratio (7.7) by using the inner product on the RKHS V . Let
U(f) =

∫ 1
0 f(t) dH(t) where H(t) satisfies (7.8), that is, U(R(t, ·)) =

m(t). Assume U(f) for f ∈ V can be expressed as 〈f, g〉 where g ∈ V
is to be determined. The requirement (7.8) becomes 〈R(t, ·), g〉 = m(t),
whose unique solution is g = m. In particular, the second term of the
likelihood ratio is proportional to∫ 1

0
m(t) dH(t) = 〈m,m〉 = ‖m‖2. (7.11)

This suggests, and it turns out to be true, that U(m) = 〈m,m〉 in
general, justifying the second part of (7.9). (Even if U cannot be written
in the form

∫
· dH, it can be approximated arbitrarily accurately by

such an expression [55].)
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Equation (7.11) can be verified to hold in Example 7.1. The square
of the RKHS norm of m(t) is

‖m‖2 =
〈∑

i

αiR(·, si),
∑
j

αjR(·, sj)
〉

=
∑
i,j

αiαjR(sj , si).

The integral can be written as∫ 1

0
m(t) dH(t) =

∑
j

αjm(sj)

=
∑
j

αj
∑
i

αiR(sj , si).

These two expressions are the same, as claimed in (7.11).
The first term of (7.7) is more subtle. It naively equals 〈X,m〉, lead-

ing to (7.9). The difficulty is that a realisation of X(t) is almost surely
not an element of the RKHS V , making 〈X,m〉 technically meaningless.
As advocated in [32] though, the mnemonic 〈X,m〉 is useful for guess-
ing the solution then verifying its correctness by showing it satisfies
(7.10). Moreover, it is intuitive to interpret the detection problem as
X 7→ 〈X,m〉 since this projects the received signal X onto the signal m
to be detected. The RKHS inner product gives the optimal projection.

Example 7.2. Assume N(t) is the standard Wiener process with
N(0) = 0 and R(t, s) = min{s, t}. The associated RKHS V is given
in Example 4.3. The detection problem is non-singular if and only if
m ∈ V . Assuming m ∈ V , the second term of the likelihood ratio (7.7)
is 1

2‖m‖
2 = 1

2
∫ 1

0 (m′(s))2 ds. The mnemonic 〈X,m〉 suggests the first
term of (7.7) is

∫ 1
0 X

′(s)m′(s) ds. This is technically incorrect because
a Wiener process is nowhere differentiable, that is, X ′(t) is not defined.
However, assumingm is sufficiently smooth and applying integration by
parts leads to the alternative expression m′(1)X(1)−

∫ 1
0 X(s)m′′(s) ds.

If X lies in V then
∫ 1

0 X
′(s)m′(s) ds and m′(1)X(1)−

∫ 1
0 X(s)m′′(s) ds

are equal. The advantage of the latter is it makes sense when X

is a realisation of a Wiener process. To verify this is correct, let
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U = m′(1)N(1)−
∫ 1

0 N(s)m′′(s) ds. Then

E[UN(t)] = m′(1)R(t, 1)−
∫ 1

0
R(t, s)m′′(s) ds

= m′(1)t−
∫ t

0
sm′′(s) ds− t

∫ 1

t
m′′(s) ds

= m′(1)t− (tm′(t)−m(t))− t(m′(1)−m′(t))
= m(t),

verifying the correct linear operator has been found. Here, integration
by parts has been used, as has the fact that m(0) = 0 because m is as-
sumed to be in V . (If m is not sufficiently smooth to justify integration
by parts, it is possible to write U in terms of a stochastic integral.)

It remains to demystify how the technically nonsensical 〈X,m〉 can
lead to the correct linear operator being found. At the heart of the mat-
ter is the concept of an abstract Wiener space. For the Wiener process
in Example 7.2 the setting is the following. Let B be the Banach space
of continuous functions f : [0, 1] → R satisfying f(0) = 0, equipped
with the sup norm ‖f‖ = supt∈[0,1] |f(t)|. Let H be the (reproducing
kernel) Hilbert space V from Example 7.2. Treated as sets, observe
that H ⊂ B. The inclusion map ι : H → B is continuous because the
norm on B is weaker than the norm on H. Furthermore, ι(H) is dense
in B. The dual map ι∗ : B∗ → H∗ is injective and dense; here, B∗ is the
space of all bounded linear functionals on B, and ι∗ takes a functional
B 7→ R and returns a functional H 7→ R by composing the original
functional with ι. Put simply, a linear functional on B is a fortiori a
linear functional on H because H is a subset of B. (The functions ι and
ι∗ are used to account for the different topologies on the two spaces.)

Every realisation of the noise process N lies in B. If g ∈ B∗ is a
linear functional then, as in the finite dimensional case (§7.1), g(N)
is a zero-mean Gaussian random variable. For technical reasons, the
geometry of B cannot correspond to the statistics of N . Instead, it is
the geometry of H that corresponds to the statistics of N . The variance
of g(N) is ‖ι∗(g)‖H. In particular, the Gaussian distribution ofN in B is
radially symmetric with respect to the norm g 7→ ‖ι∗(g)‖H. Believably
then, the detection problem can be solved by projecting X onto the
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one-dimensional space spanned by the message m, as in §7.1.
If there exists a g ∈ B∗ such that ι∗(g) is the linear operator

· 7→ 〈·,m〉 then g(X) is the precise definition of the mnemonic 〈X,m〉
in (7.9). This corresponds to the case when m was assumed to be suffi-
ciently smooth in Example 7.2. Otherwise, the extension of · 7→ 〈·,m〉
from H to B is not a bounded linear functional. It turns out though that
there exists a subspace B′ of B such that 〈·,m〉 extends to B′ and the
probability ofN lying in B′ is unity. In particular, 〈X,m〉 can be defined
to be the extension of 〈·,m〉 by continuity: if Xk → X in B, where the
Xk belong to H, then 〈X,m〉 is defined to be limk〈Xk,m〉. This limit
exists with probability one. (Mathematically, B∗ can be treated as a
subset of L2(B;R), where the L2-norm of g : B → R is the square-root
of E[g(N)2]. Then (ι∗)−1 : ι∗(B∗) ⊂ H∗ → B∗ ⊂ L2(B;R) extends by
continuity to a linear isometry fromH∗ to L2(B;R). The image of 〈·,m〉
under this extension is the true definition of X 7→ 〈X,m〉.)

Remark Here is another perspective. By [55, Lemma 1.2], the process
N(t) lies in H = L2([0, 1]) with probability one:

∫ 1
0 N

2(t) dt < ∞ al-
most surely. Furthermore, the same lemma proves that if the detection
problem is non-singular then m(t) lies in H. Therefore, without loss
of generality, the sample space can be taken to be H. As in [13], a
Gaussian measure Nµ,Q can be placed on the separable Hilbert space
H, where µ ∈ H and Q : H → H represent the mean and covariance
of the Gaussian measure. The signal detection problem is deciding be-
tween the probability measures N0,Q and Nm,Q. The Cameron-Martin
formula [13, Theorem 2.8] yields the likelihood ratio. Furthermore, the
image of H under the square-root of Q, denoted Q

1
2 (H), is precisely

the RKHS V discussed earlier, and goes by the name Cameron-Martin
space.



8
Embeddings of Random Realisations

Random variables are normally taken to be real-valued [75]. Random
vectors and random processes are collections of random variables. Ran-
dom variables can be geometrically arranged in a RKHS according to
pairwise correlations, as described in §7.2. A random variable is mapped
to a single point in the RKHS.

A different concept is embedding the realisations of a random vari-
able into a RKHS. Let X be an X-valued random variable encoding the
original random variables of interest. For example, the random variables
Y and Z are encoded by X = (Y,Z) and X = R2. Let V ⊂ RX be a
RKHS whose elements are real-valued functions on X. The realisation
x ∈ X of X is mapped to the element K(·, x) of V , where K is the
kernel of V .

The kernel does not encode statistical information as in §7.2. Its
purpose is “pulling apart” the realisations of X. A classic example
is embedding the realisations of X = (Y, Z) ∈ R2 into an infinite-
dimensional RKHS by using the Gaussian kernel (§5.2). Linear tech-
niques for classification and regression applied to the RKHS correspond
to nonlinear techniques in the original space R2.

If the realisations are pulled sufficiently far apart then a probability

70
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distribution on X can be represented uniquely by a point in the RKHS.
The kernel is then said to be characteristic. Thinking of distributions
as points in space can be beneficial for filtering, hypothesis testing and
density estimation.
Remark: Information geometry also treats distributions as points in
space. There though, the differential geometry of the space encodes
intrinsic statistical information. The relative locations of distributions
in the RKHS depend on the chosen kernel.

RKHS was first presented in the finite dimensional setting, and this
choice is done here as well, for presenting the interest of embedding ran-
dom variables in a RKHS. In section 8.2, the theory of random variables
with values in Hilbert space is outlined as a preparation. Next, embed-
dings of random variables in RKHS are presented and studied from the
probabilistic as well as the empirical points of view. Some generaliza-
tions and considerations needed in chapter 9 close the chapter.

8.1 Finite Embeddings

Definitions and concepts concerning the embedding of random realisa-
tions in a RKHS are more easily grasped when the number of possible
outcomes is finite.

Let X be an X-valued random variable where X = {1, 2, · · · , n}. Its
distribution is described by p1, · · · , pn where px is the probability of X
taking the value x. Choose the RKHS to be Euclidean space Rn. Its ker-
nel is the identity matrix. The realisation x ∈ X is therefore embedded
as the unit vector ex. Effectively, the elements e1, · · · , en of the RKHS
are chosen at random with respective probabilities p1, p2, · · · , pn. This
choice of kernel leads to the embedded points being uniformly spaced
apart from each other: ‖ei − ej‖ =

√
2 for i 6= j.

Remark: This embedding is used implicitly in [18] to great advantage.
The elements of X = {1, · · · , n} are the possible states of a Markov
chain. Representing the ith state by the vector ei converts nonlinear
functions on X into linear functions on Rn, as will be seen presently.

When n > 1, the distribution of X cannot be recovered from its
expectation E[X] = p1+2p2+· · ·+npn. However, if X̌ is the embedding
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of X then E[X̌] = p1e1+p2e2+· · ·+pnen. The distribution of X is fully
determined by the expectation of its embedding! Points in the RKHS
can represent distributions.

This has interesting consequences, the first being that the distri-
bution of X can be estimated from observations x̌1, · · · , x̌M ∈ Rn by
approximating E[X̌] by the “sample mean” 1

M

∑M
m=1 x̌m. Hypothesis

testing (§7.3) reduces to testing which side of a hyperplane the sam-
ple mean lies: the two distributions under test are thought of as two
points in the RKHS. An observation, or the average of multiple obser-
vations, is a third point corresponding to the estimated distribution.
Intuitively, the test is based on determining which of the two distribu-
tions is closer to the observation. The following lemma validates this.
The probabilities pi are temporarily written as p(i).

Lemma 8.1. Let p and q be two probability distributions on the X-
valued random variable X, where X = {1, · · · , n}. Given M observa-
tions x1, · · · , xM of X, the log likelihood ratio ln

{∏M
m=1

p(xm)
q(xm)

}
equals

〈v,
∑M
m=1 x̌m〉 where vi = ln p(i)

q(i) .

Proof. If xm = i then x̌m = ei and 〈v, x̌m〉 = vi = ln p(i)
q(i) = ln p(xm)

q(xm) .
Therefore ln

{∏ p(xm)
q(xm)

}
= ∑ ln p(xm)

q(xm) = ∑
〈v, x̌m〉.

More advanced probability texts tend to favour working with ex-
pectations (and conditional expectations) over probabilities (and con-
ditional probabilities). This generally involves expressions of the form
E[f(X)] where f : X→ R is a “test” function; if E[f(X)] is known for
sufficiently many functions f then the distribution ofX can be inferred.

An arbitrary function f : X → R is fully determined by its values
f(1), · · · , f(n). Let f̌ : Rn → R be the unique linear function on Rn

satisfying f̌(ex) = f(x) for x ∈ X. Then

E[f̌(X̌)] =
∑
x

pxf̌(ex) =
∑
x

pxf(x) = E[f(X)]. (8.1)

The advantage of E[f̌(X̌)] over E[f(X)] is that E[f̌(X̌)] = f̌(E[X̌])
because f̌ is linear. Once E[X̌] is known, E[f(X)] = f̌(E[X̌]) is effec-
tively known for any f . By comparison, E[f(X)] generally cannot be
deduced from E[X].
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Correlations take the form E[f(X) g(X)]. As above, this is equiv-
alent to E[f̌(X̌) ǧ(X̌)]. Being linear, f̃(X̌) and g̃(X̌) can be rewritten
using the Euclidean inner product: there exist vf , vg ∈ Rn such that
f̌(X̌) = 〈X̌, vf 〉 and ǧ(X̌) = 〈X̌, vg〉. Moreover, vf and vg can be ex-
pressed as linear combinations ∑i αiei and

∑
j βjej of the unit basis

vectors e1, · · · , en. In particular,

E[f(X) g(X)] = E[〈X̌,
∑
i

αiei〉〈X̌,
∑
j

βjej〉] (8.2)

=
∑
i,j

αiβjE[〈X̌, ei〉〈X̌, ej〉]. (8.3)

Once the “correlation” matrix C given by Cij = E[〈X̌, ei〉〈X̌, ej〉] is
known, E[f(X) g(X)] can be determined from (8.3).

8.2 Random elements in Hilbert spaces

Prior studying the case of the embedding in a RKHS, let us consider
the case of random variables which take values in a (separable) Hilbert
space V [9, 21]. A lemma states that a function from a probability
space (Ω,F , P ) to V is a random variable with values in V if and only
if x∗(X) is a real random variable for any linear form x∗ ∈ V ∗, the dual
of V . Since the dual of a Hilbert space can be identified to itself, the
linear form simply writes x∗(X) =

〈
x,X

〉
where x ∈ V .

The linear form on V defined by `X(x) = E
[〈
x,X

〉]
is bounded

whenever E[‖X‖] < +∞. Indeed,
∣∣`X(x)

∣∣ ≤ ‖x‖E‖X‖ thanks to the
Cauchy-Schwartz inequality. Thus, Riesz representation theorem [14]
shows the existence of a unique elementmX of V such that E

[〈
x,X

〉]
=〈

x,mX

〉
. mX is the mean element and is denoted as E[X].

Denote the space of square integrable random elements of V as
L2
V (P ) (a short notation for L2

V (Ω,F , P ).) It is the space of V val-
ued random variables on (Ω,F , P ) such that E‖X‖2 < +∞. When
equipped with

〈
X,Y

〉
L2 := E

[〈
X,Y

〉
V

]
, L2

V (P ) is itself a Hilbert space.
The covariance operator is a linear operator from V to V defined

by ΣX : x 7−→ ΣX(x) := E
[〈
x,X − mX

〉
(X − mX)

]
. It is bounded

whenever X ∈ L2
V (P ). To see this, suppose for the sake of simplicity

that EX = 0. Recall that that the operator norm is defined as ‖ΣX‖ =
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sup‖x‖≤1 ‖ΣX(x)‖ and that ‖ΣX‖ = sup‖x‖≤1,‖y‖≤1 |
〈
y,ΣX(x)

〉
|. But

applying Cauchy-Schwartz inequality leads to∣∣〈y,ΣX(x)
〉∣∣ =

∣∣E[〈x,X〉〈y∣∣X〉]∣∣
≤ E

[
‖x‖‖y‖‖X‖2

]
= ‖x‖‖y‖E

[
‖X‖2

]
which shows that ‖ΣX‖ < +∞ whenever X ∈ L2

V (P ) .
Likewise, we can define a cross-covariance operator between two

elements X,Y of L2
V (P ) by the bounded linear operator from V to

itself defined by ΣY X(x) := E[
〈
x, (X −mX)

〉
(Y −mY )]. The adjoint

operator defined by
〈
Σ∗Y X(y), x

〉
=
〈
y,ΣY X(x)

〉
is then ΣXY since by

definition ΣXY (y) = E[
〈
y, (Y − mY )

〉
(X − mX)]. The two operators

are completely defined by
〈
y,ΣXY (x)

〉
= E[

〈
x,X

〉〈
y, Y

〉
] (if the mean

elements are assumed to be equal to zero.) The cross-covariance can
even be generalized to the case of two different Hilbert spaces. Consider
two random variables X and Y defined on a common probability space
(Ω,F , P ), but taking values in two different Hilbert spaces Vx and Vy.
The cross-covariance operator has the same definition, but ΣY X has a
domain of definition included in Vx and a range included in Vy.

Covariance and cross-covariance operators have furthermore the
properties to be nuclear as well as Hilbert-Schmidt operators. A
Hilbert-Schmidt operator Σ from a Hilbert space V1 to another V2
is such that ∑i ‖Σei‖2 = ∑

ij

〈
fj ,Σei

〉2
< +∞ where {ei}, {fj} are

orthornomal bases of respectively V1 and V2. ‖Σ‖HS = ∑
i ‖Σei‖2 =∑

i,j

〈
fj ,Σei

〉2 is the Hilbert-Schmidt norm (it can be shown indepen-
dent of the choice of the bases.)

Σ is nuclear if there exist orthornomal bases {ei}, {fj} and a se-
quence {λi} verifying ∑

i |λi| < +∞ such that Σ = ∑
i λiei ⊗ fi,

where the tensorial product is defined as (ei ⊗ fi)(x) =
〈
x, ei

〉
fi. Then

‖Σ‖N = ∑
i |λi| is the nuclear norm. It also holds ‖Σ‖HS = ∑

j |λi|2.
Furthermore, the three norms of operators so far introduced satisfy the
inequalities ‖Σ‖ ≤ ‖Σ‖HS ≤ ‖Σ‖N .

8.3 Random elements in reproducing kernel Hilbert spaces

The theory of random elements in Hilbert space is specialized in the
sequel to the case where V is a reproducing kernel Hilbert space. Specif-
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ically, the embedding of an X valued random variable is developed.
Consider the embedding of an X valued random variable X into a

RKHS V ⊂ RX defined by its kernel K : X × X → R. This mean that
each realisation x ∈ X is mapped to the element K(·, x) ∈ V . This is
equivalent to defining a random variable X̌ = K(·, X) with values in
the RKHS V .

The expected value of X̌ = K(·, X) was defined coordinate-wise in
§8.1. This generalises immediately to defining E[X̌] by

〈E[X̌],K(·, z)〉 = E[〈X̌,K(·, z)〉], z ∈ X, (8.4)

where the left-hand side is the zth coordinate of E[X̌] and the
right-hand side is the expected value of the zth coordinate of X̌.
Evaluating E[X̌] is straightforward in principle: if E[X] =

∫
x dµ(x)

then E[〈X̌,K(·, z)〉] =
∫
〈K(·, x),K(·, z)〉 dµ(x) =

∫
K(z, x) dµ(x).

Remark: For E[X̌] to be well-defined, x 7→ 〈K(·, x),K(·, z)〉 = K(z, x)
must be measurable for every z ∈ X. By symmetry of the kernel,
this is the same as K(·, x) being measurable for every x ∈ X. By [10,
Theorem 90], this is equivalent to every element of the RKHS being
measurable.

While (8.4) defines E[X̌] coordinate-wise, a subtlety is whether
E[X̌] ∈ RX belongs to the RKHS V . It is usually desirable to re-
quire E[‖X̌‖] to be finite, and this suffices for E[X̌] to be an element
of the RKHS. Rather than prove this directly, an equivalent definition
of E[X̌] is given, using the theory outlined in the preceding section.

For v ∈ V , |〈X̌, v〉| ≤ ‖X̌‖‖v‖ by the Cauchy-Schwartz inequality.
Therefore, E[|〈X̌, v〉|] ≤ E[‖X̌‖]‖v‖. In particular, if E[‖X̌‖] <∞ then
E[|〈X̌, v〉|] <∞ and E[〈X̌, v〉] is well-defined. Moreover, v 7→ E[〈X̌, v〉]
is a bounded linear function. The Riesz representation theorem implies
the existence of an element mX ∈ V such that this linear map is given
by v 7→ 〈mX , v〉. Then E[X̌] is defined to be mX .

Henceforth, this definition of E[X̌] will be adopted, so that E[X̌]
is an element of the RKHS by definition. The notations mX and E[X̌]
will be used interchangeably and will be called the mean element of
X.
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Remark: Condition (8.4) only required 〈E[X̌], v〉 = E[〈X̌, v〉] to hold
for v = K(·, z), z ∈ X. However, the K(·, z) are dense in V , hence the
two definitions agree provided E[‖X̌‖] <∞.

Finally, let f ∈ V . The mean element completely determine
E[f(X)]. This is easy to show because E[f(X)] = E[

〈
K(., X), f

〉
] =

E[
〈
X̌, f

〉
] = 〈mX , f〉. Therefore, knowing mx allows to evaluate the

mean of any transformation of X, provided the transformation belongs
to V .

It is convenient to complement mX with a covariance operator ΣX

capturing E[(f(X)−E[f(X)]) (g(X)−E[g(X)])] for f, g ∈ V . Observe

E[(f(X)− E[f(X)]) (g(X)− E[g(X)])]
= E[〈f, X̌ −mX〉〈g, X̌ −mX〉]
= E[〈f, 〈g, X̌ −mX〉(X̌ −mX)〉]
= 〈f,E[〈g, X̌ −mX〉(X̌ −mX)]〉
= 〈f,ΣX(g)〉

where the linear operator ΣX : V → V is given by

ΣX(g) = E[〈g, X̌ −mX〉(X̌ −mX)]. (8.5)

Provided E[‖X̌‖2] < ∞, ΣX is well-defined and its operator norm is
finite: ‖ΣX‖ = sup‖g‖=1 ‖ΣX(g)‖ = sup‖f‖=‖g‖=1〈f,ΣX(g)〉.

Remark: If E[‖X̌‖2] = E[K(X,X)] < ∞ then E[‖X̌‖] < ∞, a
consequence of Jensen’s inequality [75, Section 6.7]. In particular,
E[‖X̌‖2] <∞ ensures both mX and ΣX exist. See also [10, §4.5].

8.4 Universal and characteristic kernels

An aim of embedding points of a space into a RKHS is to reveal features
that are difficult to study or see in the initial space. Therefore, the
RKHS has to be sufficiently rich to be useful in a given application.
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For example, the fact that the mean element reveals E[f(X)] simply
as
〈
mx, f

〉
is an interesting property essentially if this can be applied

for a wide variety of functions f . It is thus desirable that V ⊂ RX is a
sufficiently rich function space. The richness of the RKHS is obviously
provided by some properties of the kernel, since a kernel gives rise to
a unique RKHS.

Two important notions occur: the notion of universality, defined
initially by Steinwart [67] and the notion of characteristic kernel.

Universality is linked to the denseness of the RKHS into a target
space of functions and is therefore linked to the ability of the functions
of the RKHS to approximate functions in the target space. Since it
depends on the kernel, on the initial space and on the target space,
there exist different definitions of universality. We will need in the se-
quel kernel universal in the sense that their reproducing kernel Hilbert
space is dense in the space of continuous functions. In some applica-
tions, universality refers to denseness in Lp spaces. This is particularly
important when dealing with embedding of square integrable random
variables. Thus the following definition is considered.

Definition 8.1. Let X be a locally compact Hausdorff space (such as
Euclidean space). Denote by C0(X) the class of real-valued continuous
functions on X vanishing at infinity. Let K : X× X→ R be a bounded
kernel for which K(·, x) ∈ C0(X) for all x ∈ X. Then K, or its corre-
sponding RKHS V , is universal if V is dense in C0(X) with respect to
the uniform norm. (Actually, universality has several different defini-
tions depending on the class of functions of most interest [65].)

The notion of characteristic kernel is useful when embedding prob-
ability measures and is linked to the ability to discriminate two original
measures in the RKHS. Let K : X × X −→ R a kernel on X. Let P
the set of probability measures on X equipped with its Borel σ algebra.
Then K (and thus V ) is characteristic if and only if the map from P
to V defined by P 7→ EP [K(., X)] is injective, where X is any random
variable distributed under P .

There exist links between the two notions which are studied in [65].
For this paper and applications in signal processing, it suffices to know
that some well-known and often used kernels are universal and charac-
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teristic. Importantly, it is shown in [65], Proposition 5, that for radial
kernels on Rd, kernels are universal (in many diffferent sense) if and
only if they are characteristic. Furthermore the proposition gives other
necessary and sufficient condition for universality. For example, strict
positive-definiteness of the radial kernel insures it is characteristic.

Thus, important kernels such as the Gaussian kernel, K(x, y) =
exp(−σ‖x − y‖2), the inverse multiquadrics K(x, y) = (c + ‖x −
y‖2)−β, β > d/2) are characteristic and universal.

8.5 Empirical estimates of the mean elements and covari-
ance operators

The mean element mX can be estimated by the sample mean

m̂N
X = 1

N

N∑
i=1

K(·, xi) (8.6)

where x1, · · · , xN are independent realisations of X. The law of large
numbers implies m̂N

X converges to mX almost surely [31]. It also con-
verges in quadratic mean:

E[‖m̂N
X −mX‖2] = 1

N2 E

〈 N∑
i=1

K(·, Xi)−mX ,
N∑
j=1

K(·, Xj)−mX

〉
= 1
N2

N∑
i,j=1

E
[
K(Xj , Xi)−mX(X̌j)−mX(X̌i) + ‖mX‖2

]

= 1
N2

N∑
i,j=1

E
[
K(Xj , Xi)− ‖mX‖2

]
.

If i 6= j then E[K(Xj , Xi)] = ‖mX‖2 by independence:

E[K(Xj , Xi)] = E[〈K(·, Xi),K(·, Xj)〉]
= 〈E[K(·, Xk)], E[K(·, Xj)]〉
= 〈mX ,mX〉.

Therefore,

E[‖m̂N
X −mX‖2] = 1

N

(
E[K(X,X)]− ‖mX‖2

)
→ 0
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as N →∞, proving convergence in quadratic mean.
A central limit theorem also exists. For arbitrary f ∈ V , 〈f, m̂N

X〉 =
1
N

∑N
i=1 f(xi) is the sample mean of real-valued independent random

variables f(xi) and therefore
√
N〈f, m̂N

X−mX〉 converges to a Gaussian
random variable having zero mean and the same variance as f(X).
This implies

√
N(m̂N

X − mX) converges weakly on V to a Gaussian
distribution [10, Theorem 108, full proof and statement].

Estimating the covariance of X̌ in V can be reduced to estimating
the mean of (X̌ −mX)⊗ (X̌ −mX) in V ⊗ V , as now explained.

Given f, g ∈ V , define f⊗g to be the bilinear continuous functional
V × V → R sending (u, v) to 〈f, u〉〈g, v〉. That is,

(f ⊗ g)(u, v) = 〈f, u〉〈g, v〉. (8.7)

The space generated by linear combinations of such functionals is the
ordinary tensor product of V and V . Completing this space results in
the Hilbert space tensor product V ⊗V . The completion is with respect
to the inner product defined by

〈f1 ⊗ g1, f2 ⊗ g2〉 = 〈f1, f2〉〈g1, g2〉. (8.8)

If V is a RKHS then V ⊗ V is also a RKHS.

Theorem 8.2. Let V1 and V2 be two RKHSs with kernels K1 and K2.
Then the Hilbert space tensor product V = V1 ⊗ V2 is a RKHS with
kernel K((x1, x2), (y1, y2)) = K1(x1, y1)K2(x2, y2).

Proof. This is Theorem 13 of [10].

Define ΣXX = E[(X̌ − mX) ⊗ (X̌ − mX)]. It encodes the same
information as ΣX because ΣXX(f, g) = E[〈f, X̌ −mX〉〈g, X̌ −mX〉].
Being a mean, it can be estimated by

m̂N
XX = 1

N

N∑
i=1

(K(·, xi)− m̂N
X)⊗ (K(·, xi)− m̂N

X). (8.9)

8.6 Generalisations and further considerations

A covariance operator between two random variables X and Y de-
fined on a common probability space can be defined. The variables are
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embedded in RKHSs Vx and Vy using kernels Kx and Ky, and the co-
variance operator ΣY X is the linear operator from Vx to Vy defined as
ΣY Xf = E[〈f, X̌−mX〉(Y̌ −mY )]. It also has the tensor representation
ΣY X = E[(X̌−mX)⊗(Y̌ −mY )], is a mean in the tensor product space
and can thus be estimated by

m̂N
YX = 1

N

N∑
i=1

(Kx(·, xi)− m̂N
X)⊗ (Ky(·, xi)− m̂N

Y ). (8.10)

The covariance operators are nuclear operators and Hilbert-Schmidt
operators (see section 8.2.) This fact allows to construct measures of in-
dependence and of conditional independence in an elegant and efficient
way, as developed in §9.3. As nuclear operators, they admit a nuclear
decomposition as

Σ =
∑
i

λiei ⊗ fi

where {ei}, {fj} are orthonormal bases of the spaces of interest.
If the operator is the covariance operator of a random variable em-

bedded in the space, it is a positive operator. The λi are the eigenvalues
and are positive or zero, and the {ei} are the eigenfunctions of the op-
erator. In this case, the Hilbert-Schmidt theorem [14] states that any
element of the space admits the decomposition

x =
∑
i

λi
〈
x, ei

〉
ei + x′

where x′ ∈ N (Σ) is in the null space of the covariance operator. The
range of the operator R(Σ) is spanned by the eigen vectors {ei}. Thus
the range of Σ is the subset of V of those functions f ∈ V not in the
null space of Σ verifying ∑i λ

2
i

〈
f, ei

〉2
< +∞. Restricting the domain

of Σ to the space of function of V that can be written ∑i

〈
f, ei

〉
/λi

for some f in the range of Σ, we define a bijective restriction, and the
inverse is unambiguously defined as Σ−1f = ∑

i

〈
f, ei

〉
/λi for f ∈ R(Σ).

The operator is then said invertible on its range. Note that since Σ is
positive the λi considered are strictly positive, λi = 0 characterizing
members of the null space.

Hilbert-Schmidt operators are compact. If a compact operator is in-
vertible, then necessarily its inverse is unbounded, otherwise AA−1 = I
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would be compact. But I is not compact in infinite dimension. A com-
pact operator transforms a bounded set into a precompact set (every
sequence contains a convergent subsequence). But the unit ball is not
precompact in infinite dimension. One can construct a sequence in it
from which no subsequence is convergent [14].

The problem of unboundedness of the inverse of Hilbert-Schmidt
operators is at the root of ill-posed inverse problems, since unbound-
edness implies non continuity. Thus, two arbitrary close measurements
in the output space may be created by two inputs separated by a large
distance in the input space. This is at the heart of regularization theory.
In §9, inverting covariance operators is needed in almost all develop-
ments in estimation or detection. In theoretical development, we will
assume the covariance operators are invertible, at least on their range
(see above). However though, the inverse may be unbounded, and reg-
ularizing the inversion is needed. Practically, Tikhonov approach will
systematically be called for regularization [71]. Typically, the inverse
of Σ will be replaced by (Σ + λI)−1, where I is the identity operator,
or even by (Σ + λI)−2Σ. Parameter λ is the regularization parameter,
which can be chosen in some problems by either inforcing solutions
(which depend on the inverse) to satisfy some constraints, or by study-
ing convergence of solutions as the number of data grows to infinity.



9
Applications of Embeddings

In this chapter, the use of embeddings in RKHS for signal processing
applications is illustrated. Many applications exist in signal processing
and machine learning. We made here arbitrary choices that cover topics
in signal processing mainly. The aim is not only to cover some topics,
but also to provide some practical developments which will allow the
reader to implement some algorithms.

Since practical developments deal with finite amount of data, only
finite dimensional subspaces of possibly infinite dimensional RKHS are
used empirically. This is explained in a first paragraph and used to
develop matrix representations for the mean elements and the opera-
tors presented in the previous chapter (such as covariance operators.)
The following paragraphs illustrate applications of embeddings. We
first discuss embeddings for application of statistical testing in signal
processing: Comments on the use of the so-called deflection criterion
for signal detection are made; The design of independence and condi-
tional independence measures are then presented. Filtering is discussed
next. A first approach elaborate on the embedding of Bayes rule into a
RKHS, while a second approach directly deals with the embeddings of
the realisations of random signals, and how they are used for optimal

82
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filtering.

9.1 Matrix representations of mean elements and covariance
operators

Practically, mean elements and covariance operators are used by ap-
plying them to functions in the RKHS. Furthermore, the operators
estimated are usually of finite rank. In inference problems, and when
dealing with a finite number of observations {xi}i=1,...,N the represen-
ter theorem [37, 60] states that the optimizers of some empirical risk
function are to be searched for in the subspace Wx of Vx generated by
{Kx(., xi)}i=1,...,N (from now on, a kernel is indexed to stress differ-
ent variables and different kernels and spaces jointly.) This is a direct
consequence of the reproducing property. Any empirical risk to be min-
imized with respect to functions f ∈ Vx is evaluated at the points xi.
Let f(.) = f‖(.) + f⊥(.), where f||(.) ∈ Wx and f⊥(.) ∈ W⊥x . Then
f(xi) =

〈
f,Kx(., xi)

〉
= f‖(xi) and f⊥(xi) = 0. The useful subspace of

Vx is WX , and practically, the empirical mean element or operators are
applied to functions in the form

f(.) =
N∑
i=1

αiKx(., xi) (9.1)

Consider first the action of the mean element m =
〈
f, m̂N

X

〉
. The

reproducing property leads to

m =
〈 N∑
i=1

αiKx(., xi),
1
N

N∑
i=1

Kx(., xi)
〉

= 1
N

N∑
i,j=1

αiKx(xi, xj) = 1>NKxα (9.2)

where the Gram matrix Kx has entries Kx,ij = Kx(xi, xj), and where
we introduced the vectors α = (α1, . . . , αN )> and 1N = 1/N =
(1/N, . . . , 1/N)>. This is precisely the inner product of two elements
in the finite dimensional RKHS with kernel Kx and internal represen-
tations 1N and α. Furthermore, this formula leads to

〈
K(., xi), m̂N

X

〉
=

δ>i Kx1N where δi is a vector of zeros except a 1 at the ith position.
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Hence, the mean can be calculated without embedding explicitly
the data into the RKHS, but just by using the kernel evaluated at the
data points.

To get the analytic form for the application of the covariance opera-
tor to functions of VX , consider first the interpretation of the covariance
as the mean element in the tensor product Vx ⊗ Vy, and evaluate

〈
f(.), m̂N

XY (., v)
〉
Vx

=
〈 N∑
i=1

αiKx(., xi),
1
N

N∑
i=1

(Kx(., xi)− m̂X)(Ky(v, yi)− m̂Y (v))
〉
Vx

= 1
N

N∑
j=1

(
(α>Kx)j −α>Kx1N

)
(Ky(v, yj)− m̂Y (v)) (9.3)

Applying his result to a function g ∈ Vy allows to obtain

〈
g, Σ̂Y Xf

〉
= Cov [g(Y ), f(X)]

= 1
N

N∑
j=1

(
(α>Kx)j −α>Kx1N

)〈 N∑
i=1

βiKy(v, yi),Ky(v, yj)− m̂Y (v)
〉

= 1
N
α>Kx(I − 1

N
11>)Kyβ (9.4)

The matrix CN = I − 1
N 11> is the so-called centering matrix. If the

mean elements m̂X and m̂Y are known to be identically equal to zero,
then the centering matrix does not appear in the calculations. Note
that CN is idempotent, C2

N = CN .
To directly study how the empirical covariance operator acts, the

alternative definition of the covariance operator as a linear operator is
called for. Let f(.) = ∑N

i=1 αiKx(., xi) in Vx and g(.) = ∑N
i=1 βiKy(., yi)

in Vy such that g = Σ̂Y Xf .
Assuming m̂X = 0 and m̂Y = 0 for the sake of simplicity, the

empirical covariance operator can be written as

Σ̂Y Xf = 1
N

∑
i

〈
f(.),Kx(., xi)

〉
Ky(v, yi) (9.5)
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Then evaluating g = Σ̂Y Xf at the data points gives

g(yk) =
∑
j

βjKy(yk, yj) = (Kyβ)k

= 1
N

∑
i

〈
f(.),Kx(., xi)

〉
Ky(yk, yi)

= 1
N

∑
i,j

αjKx(xi, xj)Ky(yk, yi) = 1
N

(KyKxα)k(9.6)

Thus β = N−1Kxα and
〈
g, Σ̂Y Xf

〉
= N−1β>KyKxα is recovered.

Finally, the application of the inverse of a covariance operator is
important to study. As discussed earlier, the effect of the regularised
version of the operator Σ̂r,XX = Σ̂XX + λI is studied, I being the
identity (it also denotes the identity matrix in finite dimension.) Let
f = Σ̂−1

r,XXg, or g = Σ̂r,XXf where f and g are in the RKHS. Using
the decomposition f = f‖ + f⊥ recalled earlier, f‖(.) = ∑

i αiKx(., xi),
f(xk) = f‖(xk) and f⊥(xk) = 0. Thus

g(.) = 1
N

∑
i

f(xi)Kx(., xi) + λf(.)

= 1
N

∑
i,j

(Kα)iKx(., xi) + λ
∑
i

αiKx(., xi) + λf⊥(.) (9.7)

Then, evaluating g(.) at all xi,

Kxβ = 1
N

(Kx +NλI)Kxα (9.8)

or solving, the action of the regularized inverse is obtained as

α = N(Kx +NλI)−1β (9.9)

9.2 Signal detection and the deflection criterion

Signal detection is usually modeled as a binary testing problem: Based
on the observation of a signal, a detector has to decide which hypothesis
among H0 or H1 is true. The detector is in general a functional of the
observation, denoted here as a filter. In [53, 54], Picinbono&Duvaut
developed the theory of Volterra filters for signal detection. Recall that
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Volterra filters are polynomial filters. If x(n) is an input signal, the
output of a Mth order Volterra filter reads

y(n) = h0 +
M∑
i=1

∑
j1,...,ji

hi(j1, . . . , ji)x(n− j1)× . . .× x(n− ji) (9.10)

where the functions hi satisfy some hypothesis ensuring the existence
of the output y(n). The first term i = 1 is nothing but a linear filter;
the term i = 2 is called a quadratic filter, and so on. If the range of
summation of the ji’s is finite for all i, the filter is said to be of finite
memory.

In signal detection theory, if the detection problem is set up as a
binary hypothesis testing problem, different approaches exist to design
an efficient detector. For example, in the Neyman-Pearson approach,
the detector that maximizes the probability of detection subject to
a maximal given probability of false alarm is seeked for. Recall for
instance that the optimal detector in this approach of a known signal
in Gaussian noise is the matched filter, which is a linear filter, and thus
a first order Volterra filter.
Deflection. A simpler approach relies on the so-called deflection cri-
terion. This criterion does not require the full modeling of the proba-
bility laws under each hypothesis, as is the case for Neyman-Pearson
approach. The deflection is a measure that quantifies a contrast (or
distance) between the two hypotheses for a particular detector. The
greater the deflection the easier the detection, because the greater the
separation between the two hypotheses. Let an observation x be either
distributed according to P0 under hypothesis H0 or according to P1
under hypothesis H1. Let y(x) be a test designed to decide whether H0
or H1 is true. The deflection is defined as

d(y) = (E1[y]− E0[y])2

Var0[y] (9.11)

where the subscript 0 or 1 corresponds to the distribution under which
averages are evaluated. As mentionned above, the deflection quantifies
the ability of the test to separate the two hypotheses.

In general the structure of the detector is imposed, and the best
constrained structure which maximises the deflection is seeked for. If
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a linear structure is chosen, such as y(x) = h>x in finite dimension,
the matched filter is recovered. Picinbono&Duvaut studied the opti-
mal detector according to the deflection when it is constrained to be a
Volterra filter of the observation. They particularly develop the geom-
etry of the filter, recoursing to the Hilbert space underlying Volterra
filters of finite orders. An interesting fact outlooked in [53, 54] is that
this Hilbert space is the finite dimensional reproducing kernel Hilbert
space generated by the kernel K(x, y) = (1+x>y)M . This is easily seen
using a very simple example for M = 2. Consider the map defined by

Φ : R2 −→ V

x 7−→
(
1,
√

2x1,
√

2x2, x
2
1,
√

2x1x2, x
2
2
)> (9.12)

which embeds R2 into a subspace V of R6. V is a reproducing kernel
Hilbert space whose kernel is K(x, y) = (1 + x>y)2. Indeed, a direct
calculation shows that Φ(x)>Φ(y) = (1+x>y)2. Now, consider y(n) =
H>Φ

(
(x(n), x(n − 1)

)
where H ∈ R6. y(n) is then the output of a

linear-quadratic Volterra filter, with h0 = H1, h1(1) = H2/
√

2, h1(2) =
H3/
√

2, h2(1, 1) = H4, h2(1, 2) = H5/
√

2, h2(2, 2) = H6, and all other
parameters set to zeros. This simple example generalizes to anyM and
any finite memory.

The aim here is to analyse the deflection for filters living in arbitrary
RKHS.
Detecting in a RKHS. Consider V to be the RKHS associated with
kernelK. We assume the kernelK to be characteristic (i.e. the mapping
sending a probability to the mean element in V is injective.) Let µi be
the embedding of Pi, or µi(.) = Ei[K(., x)]. Let Σ0 : V → V be the
covariance operator of a random variable distributed under P0. The
detector is seeked for as a function f in the RKHS that maximizes the
deflection. Thus y = f(x) =

〈
f(.),K(., x)

〉
. Then Ei[y] = Ei[f(x)] =〈

µi, f
〉
(definition of the mean element.) Furthermore, the definition of

the covariance operator gives Var0[y] =
〈
f,Σ0f

〉
. The deflection for y

thus reads

d(y) =
〈
µ1 − µ0, f

〉2〈
f,Σ0f

〉 (9.13)

For ease of discussion, the covariance operator is assumed invertible.
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Since Σ0 is positive definite, so is its inverse, and a new inner product
in V can be defined by

〈
f, g

〉
0 =

〈
f,Σ−1

0 g
〉
. The deflection of y then

writes

d(y) =
〈
µ1 − µ0,Σ0f

〉2
0〈

f,Σ0f
〉 (9.14)

and Schwartz inequality offers an easy means to maximize the deflec-
tion. Indeed, the following holds

d(y) ≤
〈
µ1 − µ0, µ1 − µ0

〉
0
〈
Σ0f,Σ0f

〉
0〈

f,Σ0f
〉

=
〈
µ1 − µ0,Σ−1

0
(
µ1 − µ0

)〉
(9.15)

and the maximum is attained when vectors µ1 − µ0 and Σ0f are pro-
portional. The constant of proportionality is not important, since this
amounts to scale function f and does not change the optimal deflec-
tion. The constant of proportionality is thus chosen to be 1. The optimal
function hence satisfies µ1 − µ0 = Σ0f , or f = Σ−1

0
(
µ1 − µ0

)
.

The assumption of the invertibility of the covariance operator is not
fundamental in the derivation. If it is not invertible, the derivative of
the deflection (in some functional sense such as the Gateaux derivative)
is used to show that the maximum is obtained when µ1 − µ0 and Σ0f

are proportional.
If no structure is imposed to the filter, and if a Neyman-Pearson

approach is taken to solve the detection problem, the best strategy
is to compare the likelihood ratio to a threshold, chosen in order to
satisfy a constraint on the error of the first kind. A link between the
optimal detector in the deflection sense and the likelihood ratio can
be established. Precisely let r(x) = l(x) − 1 = p1(x)/p0(x) − 1. In the
following, r(x) is assumed square integrable under hypothesis H0.

First note the following. Any f for which f(x) ∈ L2 satis-
fies E0[f(x)r(x)] = E1[f(x)] − E0[f(x)]. Thus any f ∈ V such
that f(x) ∈ L2 satisfies E0[f(x)r(x)] =

〈
f, µ1 − µ0

〉
. In particular,

E0[K(u, x)r(x)] =
〈
K(u, .), µ1 − µ0

〉
=
(
µ1 − µ0

)
(u). If we seek for

the best estimator of the likelihood ratio in V minimizing the mean
square error under H0, we must center it and then estimate r(x), since
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E0[p1(x)/p0(x)] = 1. Then the optimal estimator will lead to an error
orthogonal (in the L2 sense) to V , and thus the following equation has
to be solved

E0[g(x)(r(x)− r̂(x))] = 0, ∀g ∈ V (9.16)

But using the reproducing property this last expectation can be written
as

E0[g(x)(r(x)− r̂(x))] = E0
[〈
g,K(., x)

〉(
r(x)− r̂(x)

)]
(9.17)

=
〈
g
∣∣∣E0

[
K(., x)r(x)

]
− E0

[
K(., x)

〈
r̂, K(., x)

〉]〉
(9.18)

=
〈
g, µ1 − µ0 − Σ0r̂

〉
(9.19)

Since the last result is equal to 0 for any g ∈ V , the solution necessarily
satisfies the equation µ1 − µ0 − Σ0r̂ = 0, hence proving that r̂ is the
detector that maximizes the deflection.

The optimal element in the RKHS which maximises the deflection
is therefore also the closest in the mean square sense to the likelihood
ratio.

9.3 Testing for independence

Recent works in machine learning and/or signal processing use RKHS
mainly for the possibility offered to unfold complicated data in a larger
space. In classification for example, data nonlinearly separable in the
physical space may become linearly separable in a RKHS. Testing in-
dependence by embedding data into a RKHS relies in some way on the
same idea.

The argument is to use covariance (in the RKHS) to assess inde-
pendence. It is well known that no correlation between two variables
does not imply independence between these variables. However, an in-
tuitive idea is that no correlation between any nonlinear transformation
of two variables may reveal independence. This simple idea was at the
root of the celebrated Jutten-Herault algorithm, the first device to per-
form blind source separation. In fact it was studied as early as 1959
by Rényi [57]. He showed X and Y , two variables defined on some
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common probability space, are independent if and only if the so-called
maximal correlation supf,g Cov [f(X), g(Y )] is equal to zero, where f, g
are continuous bounded functions.

Recently, this result was revisited by Bach, Gretton and co-workers
through the lense of RKHS [5, 27]. The maximal correlation as used
by Rényi is too complicated to be practically evaluated, because the
space over which the supremum has to be calculated is far too big. The
idea is then to look for the supremum in a space in which, firstly the
maximum correlation can be more easily calculated, secondly, in which
Rényi’s result remains valid.

Gretton showed in [27] that X and Y are independent if and only
if supf,g Cov [f(X), g(Y )] is equal to zero, where f, g are living in a
RKHS (precisely its unit ball) generated by a universal kernel. Recall
that universality is understood here as the denseness of the RKHS into
the space of bounded continuous functions. The link between Gretton’s
result and Rényi’s is then intuitive, since under universality, any contin-
uous bounded function may be approximated as closely as needed by a
function in the RKHS. The second requirement above is thus satisfied.
The first one is also verified, and this is the magical part of Gretton’s
approach. The maximal correlation evaluated in the unit ball of the
universal RKHS

sup
f∈Ux,g∈Uy

Cov
[
f(X), g(Y )

]
(9.20)

where U =
{
f ∈ V \‖f‖ = 1

}
, is nothing but the operator norm of the

covariance operator ΣXY . Indeed, by definition,

‖ΣXY ‖ = sup
g∈Uy
‖ΣXY g‖Vx = sup

f∈Ux,g∈Uy

∣∣ 〈f,ΣXY g〉
∣∣

= sup
f∈Ux,g∈Uy

∣∣Cov [f(X), g(Y )
]∣∣ (9.21)

As shown by Bach [5] and Gretton [27] this quantity can be efficiently
evaluated from a finite amount of data. Let (xi, yi)i=1,...,N be N inde-
pendent and identically distributed copies of X and Y , then 〈f | ΣXY g〉
approximated by

〈
f | Σ̂N

XY g
〉
is given by〈

f | Σ̂N
XY g

〉
= 1
N
α>KxCNKyβ (9.22)
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where the αs (respectively βs) are the coefficients of the expansion of
f (respectively g) in the subspace of Vx (respectively Vy) spanned by
Kx(., xi), i = 1, . . . , N (respectively Ky(., yi), i = 1, . . . , N). The norm
of f is given by α>Kxα and the norm of g by β>Kyβ. Therefore the
maximal correlation is approximated by

sup
α>Kxα=1,β>Kxβ=1

1
N
α>KxCNKyβ = 1

N

∥∥K1/2
x CNK

1/2
y

∥∥
2(9.23)

where ‖A‖2 =
√
λM (A>A) is the usual spectral norm of matrix A, that

is the square root of its maximal singular value.
The Gram matrices appearing in the estimation of the maximal cor-

relation are of size N × N . Therefore, the calculation of the maximal
correlation can be very time consuming for large data sets. A simple
idea allows to end up with a measure easier to evaluate. It relies on
Hilbert-Schmidt norms. It is known that for any Hilbert-Schmidt op-
erator, the operator norm is lower or equal than the Hilbert-Schmidt
norm. Thus Gretton’s result remains true if the operator norm is re-
placed with he Hilbert-Schmidt norm: X and Y are independent if and
only if ‖ΣXY ‖HS = 0.

Furthermore, when dealing with the data set (xi, yi), i = 1, . . . , N ,
the Hilbert-Schmidt norm of the covariance operator may be approxi-
mated by the the Hilbert-Schmidt norm of the empirical estimates of
the operator. It is then not difficult to show that

‖Σ̂N
XY ‖2HS = 1

N2Tr
(
CNKxCNKy) (9.24)

For independent and identically distributed data, this estimator satis-
fies a central limit theorem. It is asymptotically unbiased, and its vari-
ance can be explicitly written. An unbiased version also exists which
in the spirit of k-statistics eliminates the 1/N bias [64]. Both versions
satisfy some concentration inequalities and a central limit theorem (at
the usual rate) [27, 64].

This measure has been called HSIC for Hilbert-Schmidt Indepen-
dence Criterion. It can obviously be used for testing independence be-
tween two samples, but has also been used for feature selection [64].
Its evaluation requires O(N2) operations. This complexity can be low-
ered by using approximation to Gram matrices such as the incomplete
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Cholesky factorization [20] or other types of approximation [60]. As
an alternative, we have designed a recursive implementation of HSIC
which is exact, of course still requiring O(N2) operations, but which
only manipulates vectors. This algorithm can be used on very long
data sets in reasonable time. However, for huge data sets it is still im-
practical. But its recursive structure allows an efficient approximation
leading to the possibility of calculating HSIC on-line or whatever the
size of the data set. We just give the forms of the second algorithm,
the derivation being developed in [1, 2]. In this procedure, a dictionary
is built recursively, the elements of which are used to evaluate HSIC
on-line. New data are included in the dictionary if they are sufficiently
incoherent with the members of the dictionary. This procedure was
proposed in a filtering context in [58] as a simplification of the approx-
imate linear dependence (ALD) criterion proposed in [19]. Coherence
is measured in the tensor product Vx ⊗ Vy. Thanks to the reproducing
property, the coherence between two data (xα, yα) and (xn, yn) is eval-
uated as |Kx(xn, xα)Ky(yn, yα)| (assuming the kernels are normalized).
The dictionary Dµn contains the index of the data retained up to time
n, initializing it with Dµ1 = {1}. It is updated according to

Dµn =
{
Dµn−1 ∪ {n} if supα∈Dµn−1

∣∣Kx(xn, xα)Ky(yn, yα)
∣∣ ≤ µ

Dµn−1 otherwise
(9.25)

Parameter µ is in (0, 1]. If µ = 1 all the new data are aggregated to the
dictionary and the following algorithm exactly delivers HSIC. If µ < 1,
the new data are added to the dictionary if it is sufficiently incoherent
with all the members of the dictionary.

To describe the algorithm, some more notations are needed. Let κnx
be the norm Kx(xn, xn). Let πn be a |Dn| dimensional vector whose
entries πn(α) count the number of times the element α of the dictionary
has been chosen by the rule (9.25). πn is initialised by π1(1) = 1.
Let knx contain the Kx(xn, xα), ∀α ∈ Dµn−1. Vectors vn appearing in
the algorithm below are initialised as v0 = 1. Finally, ◦ denotes the
Hadamard product, i.e. the entrywise product for vectors or matrices.
Equipped with all this, the algorithm is the following:
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Sparse HSIC :

Ĥµ
n =‖Mn

yx‖2 + ‖mn
x‖2‖mn

y‖2 − 2cnyx (9.26)

‖Mn
yx‖2 = (n− 1)2

n2 ‖Mn−1
yx ‖2 + 2

n2π
>
n−1k

n
x ◦ kny +

κnxκ
n
y

n2 (9.27)

‖mn
x‖2 = (n− 1)2

n2 ‖mn−1
x ‖2 + 2

n2π
>
n−1k

n
x + κnx

n2 (9.28)

cnyx= 1
n3π

>
n v

n
x ◦ vny where: (9.29)

1. Si Dn = Dn−1 ∪ {n}

vnx =
(

vn−1
x + knx

π>n−1k
n
x + κnx

)
and πn =

(
πn−1

1

)
(9.30)

2. Si Dn = Dn−1 : a = arg maxα∈Dn−1

∣∣Kx(xn, xα)Ky(yn, yα)
∣∣,

vnx = vn−1
x + knx and πn = πn−1 + δaα (9.31)

Sparse HSIC is illustrated on the following example, taken from
[24]. Consider the couple of independent variables (X,Y ) where X

is uniformly distributed on [−a, a] and Y is uniformly distibuted on
[−c,−b]∪ [b, c], a, b, c being real positive constants. We choose a, b, c to
ensure that X and Y have the same variance. Let Zθ the random vec-
tor obtained by rotating vector (X,Y ) by an angle θ. The components
of Zθ are uncorrelated whatever θ but are independent if and only if
θ = π/2 × Z. N i.i.d. samples of Zθ are simulated. For θ varying in
[0, π/2] the final value of sparse HSIC Ĥµ

N is plotted in figure (9.1).
The right plot displays Ĥµ

N for the five values µ = 0.8, 0.85, 0.9, 0.95, 1.
The kernel used is the Gaussian kernel exp(−‖x−y‖2). As can be seen,
the distorsion due to sparsity is very small. Interestingly, the size of the
dictionary (left plot) is very small as soon as µ < 0.95 in this example,
thus implying a dramatic decrease in computation time and memory
load. Moreover, the form of the algorithm can be simply turned into
an adaptive estimator by changing decreasing step-sizes into constant
step sizes. This allows to track changes into the dependence structure
of two variables [1]. The size of the dictionary is probably linked to
the speed of decrease of the spectrum of the Gram matrix. In general,
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Figure 9.1: Right plot: HSIC as a function of θ in the example in the text. The
thick line corresponds to µ = 1 or equivalently to a non sparse evaluation of HSIC.
The other lines correspond to µ = 0.8, 0.85, 0.9, 0.95. Left plot: Size of the dictionary
achieved after N iterations as a function of mu.

when the Gram matrix can be nicely approximated by a low rank ma-
trix, we observed that the size of the dictionary obtained is small. A
general study of the approximation of the Gram matrix by the Gram
matrix issued from the coherence dictionary remains to be done. Note
however that some information are given for the related ALD criterion
in [69] (see also [4] for related materials on low rank approximations
in a regression context). We will meet again the coherence-based spar-
sification procedure in the application of RKHS to on-line nonlinear
filtering.
Maximum Mean Discrepancy (MMD). Another approach to test-
ing independence using embeddings into RKHS relies on the maximum
mean discrepancy measures or MMD [26]. MMD measures a disparity
between two probability measures P and Q . Let X and Y be two ran-
dom variables taking values in a space X and respectively distributed
according to P and Q. Let F be a function space on X . MMD is defined
as

MMD(P,Q;F) = sup
f∈F

(
EP [f(X)]− EQ[f(Y )]

)
(9.32)

If the function space is rich enough, a null MMD implies equality be-
tween P and Q. As previously, it can be shown that if F is restricted to
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be the unit ball of a RKHS associated to a universal kernel, this result
is true, MMD(P,Q;F) = 0 ⇔ P = Q. This can be used to test for
independence by measuring the maximum mean discrepancy between
a joint probability and the product of its marginals. Furthermore, and
like HSIC, there is a nice way of estimating MMD in a RKHS. In fact,
thanks to Schwartz inequality, MMD can be expressed as

MMD(P,Q;V )2 = sup
f∈V,‖f‖≤1

(
EP [f(X)]− EQ[f(Y )]

)2

= sup
f∈V,‖f‖≤1

(〈
µP − µQ, f

〉)2

=
∥∥µP − µQ∥∥2

V
(9.33)

where µP , µQ are the mean elements of respectivelyy P and Q in V .
When data (xi, yi), i = 1, . . . , N are to be tested for independence,
empirical estimators of MMD are very easy to develop and implement.
Furthermore, asymptotic results for their efficiency exist that allows a
complete development of independence testing [26].

9.4 Conditional independence measures

Remarkably, the measure of independence presented in the preced-
ing section has an extension which allows to quantify conditional
independence. Conditional independence is a fundamental concept in
different problems such as graphical modeling or dimension reduction.
For example, graphical Markov properties of Gaussian random vectors
are revealed by conditional independence relations between these
components [39, 74]. Since measuring independence was found to be
elegantly and efficiently done by embedding measures into RKHS, it
was natural to work on the extension to conditional independence. It
turns out that conditional independence can also be assessed in RKHS.

Some recalls [39, 74]. Let X,Y, Z be three real random vectors of
arbitrary finite dimensions, and X̂(Z) and Ŷ (Z) the best linear MMSE
(minimum mean square error) estimates of X and Y based on Z. It is
well-known that these are given by X̂(Z) = ΣXZΣ−1

ZZZ and Ŷ (Z) =
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ΣY ZΣ−1
ZZZ, where ΣAB := Cov [A,B] stands for the covariance matrix

of vectors A and B. The errors X−X̂(Z) and Y − Ŷ (Z) are orthogonal
to the linear subspace generated by Z, and this can be used to show
the well-known relations

ΣXX|Z := Cov
[
X − X̂(Z), X − X̂(Z)

]
= ΣXX − ΣXZΣ−1

ZZΣZX (9.34)
ΣXY |Z := Cov

[
X − X̂(Z), Y − Ŷ (Z)

]
= ΣXY − ΣXZΣ−1

ZZΣZY (9.35)

ΣXX|Z is the covariance of the error in estimating X linearly from Z.
It is also called the partial covariance and it is equal to the condi-
tional covariance in the Gaussian case. The second term measures the
correlation remaining between X and Y once the effect of their possi-
bly common observed cause Z has been linearly removed from them.
ΣXY |Z is called the partial cross-covariance matrix and is equal to the
conditional cross-covariance in the Gaussian case (i.e. X, Y and Z are
jointly Gaussian.)

Therefore, in the Gaussian case, conditional independence can
be assessed using linear prediction and the partial cross-covariance
matrix. This has led to extensive development in the field of graphical
modeling.

Using kernels. The approach above can be extended to assess condi-
tional independence for nonGaussian variables by using embeddings
in RKHS. The extension relies on the notion of conditional cross-
covariance operators, a natural extension of the covariance operators.
Having in mind that cross-covariance operators suffices to assess inde-
pendence (as cross-covariance does in the finite dimensional Gaussian
case), the idea is consider

ΣXY |Z := ΣXY − ΣXZΣ−1
ZZΣZY (9.36)

as a potential candidate to assess conditional independence the opera-
tor. The first remark concerns the existence of this operator.

ΣZZ is an operator from Vz to Vz. Let N (ΣZZ) and R(ΣZZ) be
respectively its null space and its range. The operator is supposed to
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be invertible on its range and the inverse is abusively denoted as Σ−1
ZZ .

The inverse exits in full generality if and only if N (ΣZZ) = {0} and
R(ΣZZ) = Vz, corresponding to injectivity and surjectivity. Thus in
the sequel, when dealing with ensemble operators, covariance operator
will be supposed invertible. To avoid working with inverses, normalized
covariance operators VXY should be considered. They are defined using
ΣXY = Σ1/2

XXVXY Σ1/2
Y Y [6]. The conditional covariance operator then

reads

ΣXY |Z := ΣXY − Σ1/2
XXVXZVZY Σ1/2

Y Y (9.37)

and the normalized version is given by

VXY |Z := VXY − VXZVZY (9.38)

This last definition is the only theoretically well grounded, since the V
operators are shown to exist in [6] under some assumptions, but with-
out relying on the invertibility of the covariance operators. However
for practical purposes, we will use the other form, knowing that the
existence of the inverse is subject to caution.

Several theorems show the meaning of the conditional covariance
operators, and how we can assess conditional independence with them.
They are all mainly due to Fukumizu, Bach and Jordan [22, 23].
The first result links conditional expectation to covariance and cross-
covariance operators.

Theorem 9.1. For all g ∈ Vy,〈
g,ΣY Y |Xg

〉
= inf

f∈Vx
E
[(

(g(Y )− E[g(Y )])− (f(X)− E[f(X)]
)2](9.39)

If furthermore the direct sum Vx + R is dense in L2(PX), then〈
g,ΣY Y |Xg

〉
= EX

[
Var[g(Y )

∣∣X]
]

(9.40)

The density assumption means than any random variable of L2(PX)
can be approximated as closely as desired by a function of Vx plus a real.
Adding the real is necessary since very often, constants do not belong to
the RKHS under study (Remind that L2(PX) is the space of square in-
tegrable functions with respect to PX , or otherwise stated, the space of
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functions of X with finite expected squared norm E[‖f(X)‖2] < +∞.)
The result of the theorem is an extension of what was recalled above,
but stated in RKHS. The operator ΣY Y |X measures the power of the
error made in approximating a function of a random variable embed-
ded in a RKHS by a function of another random variable embedded in
its own RKHS. The second result generalizes the Gaussian case since
under the assumption of density the operator evaluates a conditional
variance. An informal proof is given, needing hypothesis not present in
the statement. A full proof may be found in [23, Prop. 2 and 3].

Proof. Let Eg(f) = E
[(

(g(Y )−E[g(Y )])− (f(X)−E[f(X)]
)2]. Then

f0 provides the infimum if Eg(f0 + f)− Eg(f0) ≥ 0 for all f ∈ Vx. But
we have

Eg(f0 + f)− Eg(f0) =
〈
ΣXXf, f

〉
+ 2

〈
ΣXXf0 − ΣXY g, f

〉
(9.41)

Obviously, ΣXXf0 − ΣXY g = 0 satisfies the condition. It is also nec-
essary. Indeed, suppose ΣXXf0 − ΣXY g 6= 0. ΣXX is auto-ajoint and
thus only has positive or null eigen values. Thus ΣXXf = −f has no
solution and the null space of ΣXX + I is reduced to 0. Thus ΣXX + I

is invertible. Therefore there is a non zero f such that ΣXXf + f =
−2(ΣXXf0−ΣXY g), and this f satisfies Eg(f0+f)−Eg(f0) = −

〈
f, f

〉
<

0, giving a contradiction. Thus, this gives the result. Note we use
the fact that ΣXX is invertible, at least on its range. The fact that〈
g,ΣY Y |Xg

〉
= EX

[
Var[g(Y )

∣∣X]
]
is shown hereafter as a particular

case of conditional crosscovariance operator.

Since the conditional operator is linked to optimal estimation (in
the mean square sense) of a function g(Y ) from a transformation of X,
ΣXXE[g(.)

∣∣X] = ΣXY g(.) should be a solution. However, this requires
that the conditional expectation E[g(.)

∣∣X] lies in Vx, a fact that is ab-
solutely not guaranteed. If it is supposed so, the statement and results
are more direct. In that case, for any g ∈ Vy,

ΣXXE[g(.)
∣∣X] = ΣXY g(.) (9.42)

this provides a means of calculating the conditional mean in a RKHS
if the covariance is invertible.
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The following set of relations highlights the effect of the conditional
covariance operators on function.〈

f,ΣXY |Zg
〉

= Cov [f(X), g(Y )]−
〈
f,ΣXZΣ−1

ZZΣZY g
〉

= Cov [f(X), g(Y )]−
〈
ΣZXf,Σ−1

ZZΣZY g
〉

= Cov [f(X), g(Y )]−
〈
ΣZXf,E[g(.)|Z]

〉
= Cov [f(X), g(Y )]−

〈
ΣZZE[f(.)|Z], E[g(.)|Z]

〉
= Cov [f(X), g(Y )]− Cov Z

[
E[f(.)|Z], E[g(.)|Z]

]
= E[f(X)g(Y )]− EZ

[
E[f(.)|Z]E[g(.)|Z]

]
= EZ

[
Cov [f(X), g(Y )|Z]

]
(9.43)

The next question concerns whether conditional independence can be
measured using the conditional covariance operator or not? The previ-
ous result and the first one in the following theorem show that a zero
conditional covariance operator is not equivalent to conditional inde-
pendence, but equivalent to a weaker form. The second result in the
theorem below shows how to slightly modify the covariance operator
to obtain the equivalence. This theorem is also from Fukumizu and his
colleagues [22]. We suppose in the following that all the kernels used
are characteristic, and that the conditional mean involved belongs to
the proper RKHS.

Theorem 9.2. Let X,Y, Z be three random vectors embedded in cor-
responding RKHS. Then we have

1. ΣXY |Z = 0⇐⇒ PXY = EZ [PX|Z ⊗ PY |Z ]

2. Σ(XZ)Y |Z = 0⇐⇒ X ⊥ Y |Z.

Proof. First assertion. We have seen that〈
f,ΣXY |Zg

〉
= E[f(X)g(Y )]− EZ

[
E[f(.)|Z]E[g(.)|Z]

]
(9.44)

which can be written as〈
f,ΣXY |Zg

〉
= (9.45)∫

f(x)g(y)
(
PXY (dx, dy)−

∫
PZ(dz)PX|Z(dx, z)PY |Z(dy, z)

)
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Thus obviously, if for all A and B in the adequate sigma algebra

PXY (A,B) =
∫
PZ(dz)PX|Z(A, z)PY |Z(B, z) (9.46)

we have
〈
f,ΣXY |Zg

〉
= 0 for all f and g leading necessarily to ΣXY |Z =

0. Now if the covariance operator is zero then we have for all f and
g EPXY [f(X)g(Y )] = EQ

[
f(X)g(Y )

]
where Q = EZ [PX|Z ⊗ PY |Z ].

Working in the tensorial product Vx⊗Vy where we have assumed KxKy

as a characteristic kernel allows to conclude that Q = PXY .
Second assertion. Let A,B,C be elements of the sigma algebra

related to X,Y and Z respectively. Let 1A the characteristic function
of set A. Then we have

PXZY (A,C,B)− EZ [PXZ|Z(A,C)PY |Z(B)]
= E[1A×C(X,Z)1B(Y )]− EZ

[
E[1A×C(X,Z)|Z]E[1B(Y )|Z]

]
= EZ

[
1C(Z)

(
E[1A(X)1B(Y )|Z]− E[1A(X)|Z]E[1B(Y )|Z]

)]
=

∫
C
PZ(dz)

(
PX,Y |Z(A,B, z)− PX|Z(A, z)PX|Z(B, z)

)
(9.47)

If Σ(XZ)Y |Z = 0 then the first assertion implies PXZY = EZ [PXZ|Z ⊗
PY |Z ] and the previous integral is equal to zero for any C, which in turn
implies that PX,Y |Z(A,B, z)−PX|Z(A, z)PX|Z(B, z) almost everywhere
(PZ) for any A,B. But this is precisely the defintion of conditional
independence. The converse is evident.

The conclusion of this theorem is that the variables X and Y has
to be extended using Z prior conditioning. Assessing conditional
independence relies on the conditional covariance operators (extended
as above.) However, as done for independence testing, a measure is
needed. The Hilbert-Schmidt norm ‖Σ(XZ)(Y Z)|Z‖2 is used for that
purpose.

Estimation. The estimators of the conditional measures have repre-
sentations in terms of Gram matrices. In the following, the indication of
the RKHS in the inner product is suppressed for the sake of readability.
For N identically distributed observations (xi, yi, zi) the application of
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the empirical covariance estimator to a function is given by

Σ̂XY f = 1
N

∑
j

K̃x(., xj)
〈
K̃y(., yj), f

〉
(9.48)

where the tildas mean the kernel are centered. The effect of the regular-
ized inverse of this operator on a function ∑i βiKx(., xi) is to produce
the function ∑i αiKx(., xi) with α = N(K̃x + NλI)−1β := NK̃

−1
r,xβ.

The inner product
〈
f,ΣXY |Zg

〉
for f(.) = ∑

i αiK̃x(., xi) and g(.) =∑
i βiK̃y(., yi) is evaluated for N triple xi, yi, zi identically distributed.

The result for the covariance operator is known from the first section

〈
f, Σ̂XY g

〉
= 1
N
β>K̃yK̃xα (9.49)

Then the remaining term in Σ̂XY |Z = Σ̂XY − Σ̂XZΣ̂−1
ZZΣ̂ZY leads to〈

f, Σ̂XZΣ̂−1
ZZΣ̂ZY g

〉
=
∑
i,j

αiβj
〈
K̃x(., xi), Σ̂XZΣ̂−1

ZZΣ̂ZY K̃y(., yj)
〉

= 1
N2

∑
i,j,k,l

αiβj(K̃y)kj(K̃x)li
〈
K̃z(., zl), Σ̂−1

ZZK̃z(., zk)
〉

= 1
N
β>K̃yK̃

−1
r,zK̃zK̃xα (9.50)

Thus the final result is then〈
f, Σ̂XY |Zg

〉
= 1
N
β>
(
K̃yK̃x − K̃yK̃

−1
r,zK̃zK̃x

)
α (9.51)

Hilbert-Schmidt norms. Practically, a measure using the cross-
covariance is preferable. Like for independence testing, a nice measure
is provided by measuring the norm of the operator. For the Hilbert-
Schmidt norm, we have∥∥∥Σ̂XY |Z

∥∥∥2

HS
=
∑
i

〈
Σ̂XY |Zϕi, Σ̂XY |Zϕi

〉
(9.52)

=
∥∥∥Σ̂XY

∥∥∥2

HS
+
∥∥∥Σ̂XZΣ̂−1

ZZΣ̂ZY

∥∥∥2

HS
− 2

∑
i

〈
Σ̂XY ϕi, Σ̂XZΣ̂−1

ZZΣ̂ZY ϕi
〉

where we recall that {ϕi}i∈N is an orthonormal basis of Vy. The double



102 Applications of Embeddings

product term is denoted as P . It reads

P :=
∑
i

〈
Σ̂XY ϕi, Σ̂XZΣ̂−1

ZZΣ̂ZY ϕi
〉

= 1
N

∑
i,k

〈
K̃y(., yk), ϕi

〉〈
K̃x(., xk), Σ̂XZΣ̂−1

ZZΣ̂ZY ϕi
〉

= 1
N2

∑
i,k,l

〈
K̃y(., yk), ϕi

〉〈
K̃y(., yl), ϕi

〉〈
K̃x(., xk), Σ̂XZΣ̂−1

ZZ z̃y(., zl)
〉

= 1
N2

∑
k,l,m,n

(K̃y)kl(K̃
−1
r,z )lm(K̃x)kn(K̃z)mn

= 1
N2Tr

(
K̃yK̃

−1
r,zK̃zK̃x

)
(9.53)

Carrying the same calculation for the last term allows to obtain∥∥∥Σ̂XY |Z

∥∥∥2

HS
= 1

N2Tr
(
K̃xK̃y − 2K̃yK̃

−1
r,zK̃zK̃x (9.54)

+ K̃yK̃zK̃
−1
r,zK̃xK̃

−1
r,zK̃z

)
(9.55)

If the normalized version VXY |Z = VXY − VXZVZY is used, the
estimator of the Hilbert-Schmidt norm

∥∥VXY |Z∥∥2
HS

evaluated using the
empirical estimate V̂XY |Z = Σ̂−1/2

r,XXΣ̂XY |ZΣ̂−1/2
r,Y Y is given by∥∥∥V̂XY |Z∥∥∥2

HS
= Tr

(
NxNy − 2NyN zNx +NyN zNx N z

)
(9.56)

whereNu is the normalized centered Gram matrix for variable u = x, y

or z, and reads Nu = K̃uK̃
−1
r,u. The proof follows the same line as

before. This estimator has been shown to converge to
∥∥∥ΣXY |Z

∥∥∥2

HS
in

probability in [24]. To obtain the result, the regularization parameter
λ must of course depend on N and goes to zero at an appropriate rate.
Refer to [22, 23, 24] for results concerning the consistency of all the
estimates seen so far.

Following theorem 9.2, the use of these measures to assess condi-
tional independence is not enough. The extension of the random vari-
ables including Z must be considered. The measure to be tested is thus∥∥∥V̂(XZ)Y |Z

∥∥∥2

HS
.
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A simple illustration. The simplest toy example to illustrate condi-
tional HSIC is to test that three random variables X,Y, Z constitute
a Markov chain, e.g. X and Z are independent conditionally to Y .
Consider the simple generative model

X = U1

Y = a(X2 − 1) + U2

Z = Y + U3

where U1, U2, U3 are three independent zero mean, unit variance Gaus-
sian random variables, and a ∈ R is a coupling parameter. N = 512
independent and identically distributed samples (xi, yi, zi) were gener-
ated and used to estimate

∥∥∥V̂(XY )Z|Y

∥∥∥2

HS
using the equations above.

Practically with finite length data, the distribution of the measure is
not known under both hypothesisH0 : Markov andH1: non Markov. To
simulate the null hypothesis X−Y −Z is a Markov chain, equivalently,
X,Z are independent conditionally to Y or

∥∥∥V̂(XY )Z|Y

∥∥∥2

HS
= 0 , we use

random permutations of the realizations of one variable, say X. This is
usually done for independence test, since randomly permuting preserve
empirical distributions. However here, some care must be taken because
the distributions that must be preserved under permutations are the
conditional distributions. Thus, to create the permuted data, the range
of the conditioning variable Y is partitioned into L domains Y1, . . . , YL
such that each domain contains the same number of observations. The
permuted observations x̃i are obtained per domain, i.e. , ∀l = 1, . . . , L,
x̃j = xσ(j) for those js such that yj ∈ Yl, where σ(.) is a random
permutation of these js. For this toy problem, 100 permuted data sets
were created. This allows to find the threshold corresponding to a 5%
false alarm probability (level of the test).

Figure 9.2 displays the result of the simulation for this simple ex-
ample. We test the three possibilities of having the Markov property
among X,Y, Z. The coupling parameter a is varied from 0 to 1. The
plot displays the conditional HSIC measure, as well as the threshold
that ensures at most 5% of false alarms (evaluated as mentioned above
with L = 8 domains.) In the left plot, the squared norm of V̂(XZ)Y |Z
is plotted to test the Markov property for X − Z − Y . In the right
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Figure 9.2: Hilbert-Schmidt norms of conditional covariance operator to assess
conditional independence. Diamond represent the threshold insuring a 5% level test.
Left plot: Testing for the chain X → Z → Y . Middle plot: Testing for the chain
Y → X → Z. Right plot: Testing for the chain X → Y → Z. For the two leftmost
plots, the measures is above the threshold meaning that the alternative H1 is chosen
by the test, except for a = 0 in the case X → Z → Y . These results are perfectly
consistent with the simple model used. In the right plot, the measure is always below
the diamond curves, meaning that H1 is rejected, and that X − Y− is Markov, in
agreement with the model.

plot, the squared norm of V̂(XY )Z|Y is displayed to test if X − Y − Z
is a Markov chain. Finally, in the middle plot, the squared norm of
V̂(Y X)Z|X is plotted to test the Markov property for Y − X − Z. In
the left plot for a = 0, X and Y are independent and X − Z − Y is a
particular Markov chain. However, as soon as a > 0, X −Z − Y is not
a Markov chain, and this is correctly inferred by the measure for a as
small as 0.1. The fact that Y −X −Z is not a Markov chain is clearly
assessed also, as illustrated in the middle plot. Finally, the Markov case
X−Y −Z is also correctly assessed in the right plot, since the squared
norm of V̂(XY )Z|Y is always below the threshold insuring a 5% level
test.

9.5 Kernel Bayesian filtering

The idea developed mainly by Song, Fukumizu and Gretton is to trans-
fer into reproducing kernel Hilbert spaces the manipulation of proba-
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bility measures used in inference, namely the sum rule, the chain rule
and their application in Bayesian inference [25, 63]. Since conditional
distribution may be embedded into RKHS, it seems natural to seek for
the generalization of Bayesian inference in RKHS.

The starting point is theorem 9.1 which states that the conditional
covariance operator ΣY Y |X : Vy → Vy is deeply linked to optimal es-
timation of random variables of Vy from transformation of random
variables in Vx. Precisely, ΣXXE[g(Y )|X = .] = ΣXY g provided that
the function E[g(Y )|X = .] belongs to Vx, a fact that is not guaranteed
for any kernel, but a fact assumed to be true in the sequel (see [22] for
a sufficient condition.) Recall that the conditional covariance operator
is defined as

ΣY Y |X = ΣY Y − ΣY XΣ−1
XXΣXY (9.57)

a formula which assumes the invertibility of the covariance operator
in Vx, and which exactly match the conditional covariance formula for
Gaussian finite dimensional vectors.

The expression of the conditional mean allows to obtain an explicit
form for the conditional kernel mean, that is, for the embedding of the
conditional distribution. Let µX = E[Kx(., X)] and µY = E[Ky(., Y )]
be the embeddings of X and Y respectively in Vx and Vy. The two
embeddings are linked by

µY = ΣY XΣ−1
XXµX (9.58)

To show this relation, the conditional expectation of g(Y ) given X

which satisfies E[g(Y )|X = .] = (Σ−1
XXΣXY g)(.) is used in the following

set of equations, valid for all g ∈ Vy,〈
ΣY XΣ−1

XXµX , g
〉
Vy

=
〈
µX ,Σ−1

XXΣXY g
〉
Vx

=
〈
µX , E[g(Y )|X]

〉
Vx

= EX [E[g(Y )|X]]
= E[g(Y )]
=

〈
µY , g

〉
Vy

(9.59)

In particular, since µY = EY [Ky(., Y )] = EXEY |X [Ky(., Y )] =
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EX [µY |X ], setting P (dX) = δx(dX) in (9.58) allows to obtain the con-
ditional kernel mean as

µY |x(.) = EY |X=x[Ky(., Y )] = ΣY XΣ−1
XXKx(., x)

:= ΣY |XKx(., x) (9.60)

Note that the embedding µY |x(.) is a function which belongs to Vy.
In these formula, the couple X,Y is distributed according to the

joint probability P (X,Y ). The covariance operator ΣY X is defined
as the expected value of the tensor product Ky(., Y ) ⊗ Kx(., X) over
the joint probability. Recall that it has three interpretations. The
first considers the covariance as a tensor, it is to say a bilinear func-
tional over the product Vy × Vx (precisely their duals). The second
well-know fact is based on the very definition of the tensor product
(Ky(., Y ) ⊗ Kx(., X))(g, f) = 〈g(.) | Ky(., Y )〉 〈f(.) | Kx(., X)〉, which
allows to write ΣY Xf = E[〈f(.) | Kx(., X)〉Ky(., Y )] and to consider
ΣY X as a linear operator from Vx to Vy. The third interpretation con-
siders ΣY X as the embedding of the joint probability into the tensor
product space Vy ⊗ Vx. Since under this interpretation the covariance
ΣXX can be seen as the embedding of P (X) into the tensor product
Vx ⊗ Vx, this point of view allows to consider ΣY XΣ−1

XX as a represen-
tation of

P (Y |X) = P (X,Y )
P (X) = P (X|Y )

∫
P (dX, Y )∫

P (X, dY ) (9.61)

Writing the conditional kernel embedding as µY |x(.) =
ΣY XΣ−1

XXKx(., x) is at the root of the embedding of Bayesian
inference into RKHS. It can be seen as the embedding of Bayes
law when the likelihood is P (X|Y ) and the prior probability is
P (Y ) =

∫
P (dX, Y ). However, in Bayesian inference, if the likelihood

is generally given, the prior is not given and in general not equal to
the marginal of a given joint probability distribution.

Thus for Bayesian inference, the previous formula for the condi-
tional embedding can be used, but for

P (Y |X) = Q(X,Y )∫
Q(X, dY ) = P (X|Y )π(Y )∫

Q(X, dY ) (9.62)
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The joint probability to be considered is no longer P (X,Y ) =
P (X|Y )P (Y ) but instead Q(X,Y ) = P (X|Y )π(Y ). The embedding
of the a posteriori probability is then given by

µπY |x = Eπ[Ky(., Y )|x] = Σπ
Y XΣπ−1

XXKx(., x) (9.63)

where the superscript π reminds that the a priori probability is π in-
stead of

∫
P (dX, Y ).

It is possible to relate Σπ
Y X (or its adjoint Σπ

XY ) and Σπ−1
XX to em-

beddings evaluated on the joint probability P , using the following set
of equations

Σπ
XY = EQ[Kx(., X)⊗Ky(., Y )]

= Eπ
[
E[Kx(., X)⊗Ky(., Y )

∣∣Y ]
]

= Eπ
[
E[Kx(., X)

∣∣Y ]⊗Ky(., Y )
]

= Eπ
[
µX|Y ⊗Ky(., Y )

]
= Eπ

[
ΣX|YKy(., Y )⊗Ky(., Y )

]
= ΣX|Y Σπ

Y Y (9.64)

The second line in this equation can also be interpreted as the average
of the embedding of P (Y,X|Y ): this interpretation offers an alternative
expression as

Σπ
XY = Eπ

[
E[Kx(., X)⊗Ky(., Y )

∣∣Y ]
]

= Eπ
[
µXY |Y

]
= Eπ

[
ΣXY |YKy(., Y )

]
= ΣXY |Y µ

π
Y (9.65)

Likewise, the covariance operator reads

Σπ
XX = ΣXX|Y µ

π
Y (9.66)

Interpretations. The operators Σπ
XY and Σπ

XX have simple in-
terpretations when considered as embeddings. Σπ

XX corresponds
to the embedding of the law Q(X) =

∫
P (X|Y )π(dY ) into the

tensorial product Vx ⊗ Vx. Σπ
XY is the embedding into Vx ⊗ Vy of
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Q(X,Y ) = P (X|Y )π(Y ). Thus Σπ
XX can be seen as the embedding of

the sum rule, and is thus called kernel sum rule, whereas Σπ
XY is the

embedding of the chain rule, and is thus called kernel chain rule.
Obviously, Bayesian manipulation are a succession of applications of
these rules.

To sum up, the embedding of the a posteriori probability reads

µY |x = Σπ
Y XΣπ−1

XXKx(., x) = (Σπ
XY )>Σπ−1

XXKx(., x) (9.67)

where

Chain rule :
{

Σπ
XY = ΣX|Y Σπ

Y Y = ΣXY Σ−1
Y Y Σπ

Y Y

or = ΣXY |Y µ
π
Y = Σ(XY )Y Σ−1

Y Y µ
π
Y

(9.68)

Sum rule : Σπ
XX = ΣXX|Y µ

π
Y = Σ(XX)Y Σ−1

Y Y µ
π
Y (9.69)

Estimators. Estimators for

µY |x = Σπ
Y XΣπ−1

XXKx(., x) (9.70)
Σπ
XY = Σ(XY )Y Σ−1

Y Y µ
π
Y (9.71)

Σπ
XX = Σ(XX)Y Σ−1

Y Y µ
π
Y (9.72)

are obtained using empirical estimators of the different covariance op-
erators. The last two operators are seen as linear operator from Vy into
respectively Vx⊗Vy and Vx⊗Vx. Let us find an estimator for Σπ

XY . The
other will be obtained immediately by replacing Σ(XY )Y with Σ(XX)Y .

The estimators are based on the observation of N i.i.d. samples
(xi, yi) of the couple (X,Y ). We denote by Kx and Ky the Gram ma-
trices evaluated on this sample. Furthermore, since information about
the prior is needed, a number Nπ of i.i.d. samples Y π

i from the prior
π are assumed to be observed. This seems a strange assumption, but
in many situations, these samples are at hand. For example, in recur-
sive nonlinear filtering, the posterior probability at a particular time
step serves as prior probability for the following time step. This will
be detailed in the next section. The estimator for the function µπY is
written as

µπY (.) =
Nπ∑
i=1

γiKy(., Y π
i ) (9.73)
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Let µπY the vector containing the µπY (yk). Using the results of §9.1, we
know that Σ−1

Y Y µ
π
Y (.) = ∑

i βiKy(., yi) where

µπY = 1
N

(Ky +NλI)Kyβ (9.74)

Applying Σ(XY )Y to Σ−1
Y Y µ

π
Y leads to

Σπ
XY = 1

N

∑
ij

βiKy,ijKx(., xj)⊗Ky(., yj)

=
∑
j

µjKx(., xj)⊗Ky(., yj) where (9.75)

µ = (Ky + λI)−1µπY (9.76)

Likewise

Σπ
XX =

∑
j

µjKx(., xj)⊗Ky(., xj) where (9.77)

µ = (Ky + λI)−1µπY (9.78)

To get an estimate for µY |x note that Σπ
Y X = Σπ,>

XY = ∑
j µjK(., yj) ⊗

K(., xj). Since Σπ
XX is not insured to be positive definite, the regular-

ization (Σ2 + εI)−1Σ of the inverse is used. Doing as above, searching
for µY |x(.) = ∑

j ζj(x)Ky(., yj), the vector

ζ(x) = Λ
(
(KxΛ)2 + εI

)−1
KxΛkX(x)

= ΛKx

(
(KxΛ)2 + εI

)−1
ΛkX(x) (9.79)

is finally obtained, where kX(x) = (Kx(x1, x), . . . ,Kx(xN , x))> and
Λ = Diag(µ) is a diagonal matrix, the diagonal elements of which are
the entries of µ.
Note that the matrix representation presented here has been shown
to converge to the true embedding when the number of data goes to
infinity, and when the regularization parameters goes to zero at correct
speed (see [25].)

Some application of kernel Bayes rule were presented in [25, 63],
among which a kernel belief propagation for inference on graphs, Bayes
inference problems with unknown likelihood (an alternative solution
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to Approximate Bayesian Calculation), and to filtering. In the sequel,
kernel Bayes filtering is developed and applied to the prediction of time
series.
Application in filtering. The problem of filtering is to estimate an
hidden state xk from past observations y1:k := (y1, . . . , yk). Assuming
the state is Markovian and the observation conditionally white, the
solution of the problem is given by the well-known recursion for the a
posteriori probability

p(xk|y1:k) = p(yk|xk)p(xk|y1:k−1)∫
p(yk|xk)p(xk|y1:k−1)dxk

(9.80)

which is nothing but Bayes law where the prior probability is
p(xk|y1:k−1). Therefore, kernel Bayes rules can realize this recursion
in a RKHS. Let mz,k|l be the embedding of p(zk|y1:l) in Vz where z is
either x or y, and Vz is the RKHS associated to kernel Kz(., .).

Embedding the previous recursion in a RKHS amounts to apply-
ing kernel Bayes rule (9.67) with prior probability p(xk|y1:k−1) and
likelihood p(yk|xk), to obtain the embedding mx,k|k of the posterior
probability.

Firstly, the link between the embedding mx,k|k−1 of the prior prob-
ability, and mx,k−1|k−1 is obtained by applying (9.58), or

mx,k|k−1 = Σxkxk−1Σ−1
xk−1xk−1mx,k−1|k−1 (9.81)

Then the kernel sum rule for p(yk|y1:k−1) =∫
p(yk|xk)p(xk|y1:k−1)dxk and the kernel chain rule for

p(yk|xk)p(xk|y1:k−1) have to be used. The application of (9.68)
and (9.69) will respectively give the operators cx,k|k and cyy,k|k−1
needed for kernel Bayes rule (9.67),

mx,k|k = cx,k|kc
−1
yy,k|k−1Ky(., yk) (9.82)

The operator cyy,k|k−1 satisfies, according to the sum rule (9.69)

cyy,k|k−1 = Σ(ykyk)xkΣ−1
xkxk

mx,k|k−1 (9.83)

whereas the operator cx,k|k is provided by the chain rule (9.68), or

cx,k|k = ΣykxkΣ−1
xkxk

mx,k|k−1 (9.84)
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These last four equations provide the embedding of the optimal filtering
solution into the RKHS Vx.

To obtain a matrix representation for all these rules, N +1 samples
of the couple (xk, yk) are supposed to be observed. At time k − 1 the
kernel conditional mean is given by

mx,k−1|k−1(.) =
N∑
i=1

αk−1
i Kx(., xi) = kX(.)αk−1 (9.85)

and therefore, the matrix representation of (9.81) is given by

mx,k|k−1(.) = kX+(.)(Kx + λI)−1Kxα
k−1 (9.86)

where kX+(.) = (Kx(., x2), . . . ,Kx(., xN+1)) and Kx is the Gram ma-
trix built on x1, . . . , xN .

Then, the operator cx,k|k given by equation (9.84) has the represen-
tation

cx,k|k = kY (.)(Kx + λI)−1(mx,k|k−1(x1), . . .mx,k|k−1(xN )
)>

= kY (.)(Kx + λI)−1KXX+(Kx + λI)−1Kxα
k−1

=
N∑
i=1
µkiKy(., yi) where (9.87)

µk = (Kx + λI)−1KXX+(Kx + λI)−1Kxα
k−1 (9.88)

Likewise the operator cyy,k|k−1 in (9.83) has the representation

cyy,k|k−1 =
∑
i

µkiKy(., yi)⊗Ky(., yi) (9.89)

Finally, mx,k|k(.) = kX(.)αk−1 where parameter αk reads

αk = ΛkKy

(
(KyΛk)2 + εI

)−1
ΛkkY (yk) (9.90)

where Λk = Diag(µk).
To synthesize: the kernel conditional mean is given by

mx,k|k(.) =
N∑
i=1

αkiKx(., xi) = kX(.)αk (9.91)
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where the vector αk satisfies the recursion

µk = (Kx + λI)−1KXX+(Kx + λI)−1Kxα
k−1 (9.92)

Λk = Diag(µk) (9.93)

αk = ΛkKy

(
(KyΛk)2 + εI

)−1
ΛkkY (yk) (9.94)

The matrix (Kx + λI)−1KXX+(Kx + λI)−1Kx can obviously be pre-
computed. With the notation taken, the first useful time for a real
estimation is k = N + 2, since the first N + 1 dates are used for
learning. To initialize, π̂(xN+1) = E[Kx(., xN+1)] = ΣxyΣ−1

yyK(., yN+1)
can be used, and thus αN+1 = (Ky + λI)−1kY (yN+1).

The outcome of the algorithm is an estimation of the embedding of
the a posteriori measure. If an estimate of E[f(xk)|y1, . . . , yk] where
f ∈ Vx is seeked for, the definition E[f(xk)|y1, . . . , yk] =

〈
f,mk|k

〉
is

applied. However, if f does not belong to the RKHS, this can not be
applied. A possibility is to find the pre-image xk whose image Kx(., xk)
is the closest to the embedding of the posterior probability. For ra-
dial kernel Kx(., x) = f(‖. − x‖2) this can be solved efficiently if
closeness is measured using the RKHS norm [60]. Indeed, searching
for minx ‖Kx(., x) −∑iKx(., xi)αti‖ leads to the fixed point condition
x = ∑

i xif
′(‖x − xi‖2)αti/

∑
i f
′(‖x − xi‖2)αti. A solution can be ob-

tained sequentially as

xtn =
∑
i xif

′(‖xtn−1 − xi‖2)αti∑
i f
′(‖xtn−1 − xi‖2)αti

(9.95)

No convergence guarantees exist for this procedure, and ad-hoc
stategies are usually called for, such as running the algorithms with
several different initial conditions, . . .

Illustration in prediction. An example of kernel Bayes filtering on a
prediction problem is presented. In the example taken from [58], a signal
zn is generated using the following nonlinear autoregressive model

zn = (8− 5e−z2
n−1)zn−1

10 − (3 + 9e−z2
n−1)zn−2

10 + sin(πzn−1)
10 + εn(9.96)

where εn is chosen from an i.i.d. sequence of zero mean Gaussian ran-
dom variables of standard deviation set to 0.1 in the illustration. A
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plot of the phase space (zn−1, zn) is depicted in the left plot in figure
9.3. The learning set is composed of the first 512 samples of the signal
zn. The data set is composed by the state xn = (zn, zn+1)> and the
observation is simply yn = zn. The state xn is estimated and ẑn+1 is
defined as the second coordinate of the estimated state. The parame-
ters chosen for the simulation are not optimized at all. The kernels are
Gaussian kernels with variance parameters set to 0.5. The regularisa-
tion parameters were set to 10−4.
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Figure 9.3: Left plot: phase diagram of the time series used to illustrate kernel
Bayes filtering. Middle plot: Square root of the mean square error of the predictor
obtained bby averagin gover 200 snapshots. The first 512 sample represent the power
of the signal to be estimated since this interval correspond to learning, and no
estimationis performed: the estimator is set to zero during this period of time. The
horizontal line marks the amplitude 0.1 which corresponds to the standard deviation
of the dynamical noise, and is therefore the optimal power to reach. Right plot: a
particular snaphot. The outlier corresponds to a bad estimate by the pre-image
algortihm.

As shown in the right plot of figure 9.3, the error en+1|n = zn+1 −
ẑn+1 is almost equal to to the dynamical noise εn+1. The standard devi-
ation of en+1|n is estimated by averaging the above procedure over 100
snaphots; its value after convergence is 0.13, close to 0.1, the standard
deviation of the dynamical noise. The square root of the mean square
error of prediction is depicted in the middle plot. As recalled earlier
learning is performed on the first 512 samples and estimation begins
at time 514. Therefore, the first 512 samples presented are respectively
the signal zn+1 in the right plot, and its power in the middle plot.
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Finally, the presence of an outlier at time around 850 in the right
plot is interesting. It comes from a bad estimation of the pre-image. The
algorithm to go back from the RKHS to the input space is very impor-
tant to produce a good estimation. In the implementation used for this
illustration, the convergence of the pre-image algorithm is controlled. If
divergence occurs, or if no convergence (oscillations) occurs, the algo-
rithm is re-initialized and run again. The initial condition is randomly
chosen. The outlier in the figure corresponds to a point which is just
below the threshold used to decide of divergence.

This example illustrates the effectiveness of kernel Bayes rules here
applied in prediction. Note that as developped, kernel Bayes filtering
is not an on-line procedure per se, since learning is done on a fixed
set of data. Thus the approach here should be compared with gaus-
sian processes regression or kernel regression. All these methods will
have the same level of quality. On-line learning with kernel Bayes rule
remains to be developped, especially for cases in which the a priori
and/or the observation are nonstationary. For these cases, on-line fil-
tering approaches have been developed in a non Bayesian framework,
as evoked in the following.

9.6 On-line filtering using RKHS

Filtering may be seen is an estimation problem. Before discussing on-
line filtering in RKHS it is worth presenting some consideration of
estimation in RKHS.
On estimation in RKHS. Consider for example the following prob-
lem which is at the root of filtering. Let y be a real square integrable
random variable, and consider using this random variable to estimate
another random variable, say X with values in X. Minimizing the mean
square error E[(Y −h(X))2] is often used. With the only constraint that
h is measurable, the optimal function h is given by h(X) = E[Y |X],
the conditional mean.

Usually the conditional mean is very difficult to evaluate so that
the function h is searched for in some more constrained classes of
functions. If h is restricted to be a linear functional, the solution is
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Wiener filter. For example, if X = Rn, the vector h which minimizes
E[(Y −h>X)2] is seeked for. The solution satisfies the well known equa-
tion E[Y X] = E[XX>]h. Here, the problem is formalized and solved
when functions h is searched for in a RKHS whose kernel is a kernel
on X. This corresponds to the important situation where the optimal
filter h is as a linear functional of the transformed observation (by the
kernel.)

Thus letK be a kernel on X andH its associated reproducing kernel
Hilbert space of functions from X to R. The best estimator satisfies

f0 = arg min
f∈H

E
[
(Y − f(X))2

]
(9.97)

Let R(f) = E
[
(Y − f(X))2

]
. To find the minimun, a necessary condi-

tion is to set to zero the Gateaux derivative in every possible direction
[14], i.e. since R is a functional, to solve

dR(f + εϕ)
dε

∣∣∣
ε=0

= 0, ∀ϕ ∈ V (9.98)

This is equivalent to

ΣY Xϕ =
〈
ϕ,ΣXXf

〉
, ∀ϕ ∈ V (9.99)

where

ΣXX : V −→ V

f 7−→ ΣXXf := E[
〈
f,K(., X)

〉
K(., X)] (9.100)

ΣY X : V −→ R
f 7−→ ΣY Xf := E[

〈
f,K(., X)

〉
Y ] (9.101)

are the covariance and the correlation operators. The correlation oper-
ator is in this particular case a bounded linear functional and thanks
to the Riesz representation theorem can be written as ΣY Xf :=〈
f,E[Y K(., X)]

〉
. Then the optimal function is found if we solve〈

ϕ,E[Y K(., X)]
〉

=
〈
ϕ,ΣXXf

〉
∀ϕ ∈ V (9.102)

Since this is valid for any ϕ the solution is given by the function that
solves ΣXXf = E[Y K(., X)]. Practically of course, the covariance and
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correlation operators have to be estimated from a finite set of data.
Let (yi, xi) these data. From the representer theorem we know that
the functions are to be searched for in the subspace of H generated by
the K(., xi). Then the preceding equation has an empirical counterpart
which reads〈∑

i

αiK(., xi),
∑
j

yjK(., xj)]
〉

= αTKXKXβ, ∀α (9.103)

αTKXy = αTKXKXβ, ∀α (9.104)

where KX is the Gram matrix, and f(.) := ∑
j βjK(., xj). This is the

same solution as the regression case in machine learning, as developed
in the following paragraph.

Filtering in a RKHS. Filtering in a RKHS is a particular problem
of regression. The data (yi, xi) considered above can be seen as obser-
vations that can be explained using a regression Y = f(X) where f is
searched for in a RKHS. From a signal processing perspective, yi may
represent the value of signal y at time i, whereas vector xi contains
past samples of another signal. y = f(X) is thus considered as a black
box model, and the aim of the optimal estimation is to identify f(.).

Thus, let yn and zn be two real valued random signals, and suppose
we look for a function which minimizes the power of the error yn−f(xn),
where xn = (zn, zn−1, . . . , zn−d+1)> ∈ Rd. Rd is embedded into a RKHS
using a kernel K on Rd, and the optimizing function is seeked for in the
RKHS. The optimization is realized on a set of N observed data (yi, xi).
Furthermore, since most of the interesting RKHS are of either high or
infinite dimension, overfitting is likely to occur, and some regularization
must be included. The norm in the RKHS is used to constrain the
function. Thus, the optimization problem can be written as

f0(.) = arg min
f∈V

∑
i

∣∣∣yi − f(xi)
∣∣∣2 + λ

∥∥∥f∥∥∥2

V
(9.105)

The representer theorem [37, 60] states that the optimizing function f0
belongs to the the subspace of V generated by {K(., xi)}, i = 1, . . . , N .
If f0 = ∑

i α0,iK(., xi), the preceding program is equivalent to

α0 = arg min
α∈RN

(yi −Kxα)>(yi −Kxα) + λα>Kxα (9.106)
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the solution of which is given by

α0 = (Kx + λI)−1y (9.107)

Then when a new datum xk is observed, k > N , the corresponding
estimate yk writes

yk =
N∑
i=1

α0,iK(xk, xi) = Kx(xk)>(Kx + λI)−1y (9.108)

where Kx(xk)> =
(
K(xk, x1), . . . ,K(xk, xN )

)
. This regularized

solution is also known as the ridge regression. The result may appear
strange since in the linear case it reads yk = x>kX(XX> + λI)−1y

where X is the design matrix (x1, . . . , xN )>. But the well known trick
X(XX> + λI)−1 = (X>X + λI)−1XT allows to recover the usual
Wiener filtering form yk = x>k (X>X + λI)−1X>y.

On-line filtering. As an application the problem of on-line filtering is
considered. The aim here is to use the previous filter in situations where
data arrives in streams or on-line, and can not be processed in batch
mode. Thus a recursive structure is needed to refresh the filter when a
new datum is acquired, so as to produce a new estimate without the
need of re-calculating. This problem has seen some important develop-
ments in the last decade, with the presentation of the kernel Recursive
Least Square (kRLS) algorithm [19], followed by many works such as
those reviewed recently in [61].

The biggest difficulty for on-line kernel algorithms lies in the fact
that they inherently manipulates Gram matrices whose sizes grow lin-
early with the size of the data. Thus, on-line kernel algorithms nec-
essarily include a sparsification procedure which allow to approximate
the Gram matrices needed as well as possible. For a recent thorough
review of on-line kernel algorithms for signal processing problems, we
refer to [61]. Here, the kRLS in which the sparsification is the Ap-
proximate Linear Dependence criterion is presented. The kLMS which
uses the coherence criterion as sparisfication criterion is proposed as a
simplified alternative. We already used the coherence criterion in §9.3.

The sparsification procedure is based on a recursive building of a
dictionary using the ALD. Initializing the dictionary D1 = 1 with the
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first datum acquired x1, the rule to create the dictionary is

Dn=
{
Dn−1 ∪ {n} if K(., xn) is not ALD of {K(., xα)}α∈Dn−1

Dn−1 otherwise (9.109)

Approximate linear dependence is measured according to the mean
square error in the prediction of K(., xn) from the members K(., xα)
of the dictionary at time n − 1. If this error is greater than a user
specified threshold, the ALD is rejected, and K(., xn) carries enough
new information to be incorporated into the dictionary.

Thus at each time n, the approximation is k̂(., xn) =∑dn−1
i=1 an,iK(., xαi), where dn = |Dn|, and where the coefficients are

obtained as in the regression framework presented above, that is

an = K̂
−1
n−1kn−1(xn) (9.110)

and the minimum mean square error reached is given by

en = K(xn, xn)− kn−1(xn)>an
= K(xn, xn)− kn−1(xn)>K̂−1

n−1kn−1(xn) (9.111)

In these equations, (K̂n−1)ij = K(xαi , xαj ) is the Gram ma-
trix evaluated on the dictionary at time n − 1 and kn−1(xn)> =(
K(xn, xα1), . . . ,K(xn, xαdn−1

)
)
. The test for ALD consists in compar-

ing en to a given value e0. If the ALD is accepted or en < e0, the
dictionary is not modified and Dn = Dn−1. If the ALD is rejected,
Dn = Dn−1 ∪ {n} and obviously k̂(., xn) = K(., xn).

Interestingly, this allows to obtain an approximation of the Gram
matrix calculated over all the observation measured up to time n. In-
deed, since for all n, k̂(., xn) = ∑dn−1

i=1 an,iK(., xαi), the (l,m) entry of
the full Gram matrix reads approximately

K(xl, xm) ≈
〈
k̂(., xl), k̂(., xm)

〉
(9.112)

=
dm−1∑
i,j=1

al,iam,jK(xαi , xαj ) (9.113)

This supposes without loss of generality that l ≤ m, and implicitely
set al,i = 0 as soon as i > dl−1. This allows to store the coefficient al,i
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into a matrix Al of appropriate dimension and to write

Kn ≈ AnK̂nA
>
n (9.114)

The matrix An is updated as (A>n−1a
>
n )> if ALD is accepted, and as(

An−1 0
0 1

)
(9.115)

if ALD is rejected.
For the problem of on-line regression, the following problem has to

be solved

αn = arg min
α

(yn −Knα)>(yn −Knα) (9.116)

a program replaced by

αn = arg min
α

(yn −AnK̂nα)>(yn −AnK̂nα) (9.117)

where the substitution α↔ A>nα has been made. The optimal param-
eter αn at time n is thus given by the pseudo-inverse of AnK̂n applied
to yn, or after elementary manipulations

αn = K̂
−1
n (A>nAn)−1A>n yn (9.118)

This form allows an easy transformation into a recursive form. Basi-
cally, at time n, if ALD is accepted and the dictionary does not change
Dn = Dn−1, then K̂n = K̂n−1, An is updated as (A>n−1a

>
n )> and

P n = (A>nAn)−1 is updated as usual as

P n = P n−1 −
P n−1ana

>
nP n−1

1 + a>nP n−1an
(9.119)

However, if at time n ALD is rejected, the dictionary is increased
Dn = Dn−1 ∪ {n}, K−1

n is updated as

K̂
−1
n =

(
K̂n−1 kn−1(xn)

kn−1(xn)> K(xn, xn)

)−1

= 1
en

(
enK̂

−1
n−1 + ana>n −an
−a>n 1

)
(9.120)
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An−1 updated according to (9.115), and P n follows

P n =
(
P n−1 0

0 1

)
(9.121)

Using some algebra then leads to the following kRLS algorithm.
Initialize D1 = {1},α1 = y1/K(x1, x1) and then for n ≥ 2

1. an = K̂
−1
n−1kn−1(xn) and en = K(xn, xn)− kn−1(xn)>an

2. if en ≤ e0, Dn = Dn−1, update P n according to (9.119), K̂−1
n =

K̂
−1
n−1 , An = (A>n−1a

>
n )> and set

αn = αn−1 + K̂
−1
n−1P n−1an

1 + a>nP n−1an

(
yn − kn−1(xn)>αn−1

)
(9.122)

else Dn = Dn−1 ∪ {n}, update P n according to (9.121), K̂−1
n

according to (9.120), An according to (9.115) and set

αn =
{
αn−1 − anen

(
yn − kn−1(xn)>αn−1

)
1
en

(
yn − kn−1(xn)>αn−1

) (9.123)

The complexity of the kRLS is dominated by inverting the matrices.
If a lower complexity is required, simpler approaches may be used, such
as the kernel Least Mean Square (kLMS) algorithm. Its expression is
just written down, referring to [40, 61] for more details and variants. It
uses a dictionary as well. However, since the ALD requires the propa-
gation of the inverse of K̂n, the criterion can not be used here because
a motivation for the kLMS is to reduce complexity. Thus another cri-
terion must be used. The simpler one up to today is the coherence
criterion proposed in this context in [58], and that we detailed previ-
ously. If the new datum is not coherent enough with the dictionary it
is included. Coherence is measured in the RKHS and therefore simply
uses the kernel evaluated at the new datum and at the members of the
dictionary. The normalized kLMS recursively and adaptively computes
the coefficient vector according to the following steps:

Initialize D1 = {1},α1 = y1/K(x1, x1) and then for n ≥ 2
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1. en = maxα∈Dn−1

∣∣K(xn, xα)
∣∣

2. if en ≥ e0, Dn = Dn−1, set

αn = αn−1 +
λ
(
yn − kn−1(xn)>αn−1

)
ε+ kn−1(xn)>kn−1(xn) kn−1(xn) (9.124)

else Dn = Dn−1 ∪ {n}, set

αn =
(
αn−1
0

)
+
λ
(
yn − kn−1(xn)>αn−1

)
ε+ kn(xn)>kn(xn)

(
kn−1(xn)
K(xn, xn)

)
(9.125)

where recall that kn(xn)> = (K(xn, xα1), . . . ,K(xn, xαdn )

λ is the step size parameter that controls as usual the variance-bias
trade-off. A study of convergence of this algorithm as been proposed
recently in the Gaussian case for Gaussian kernels [47].

An illustration. The two algorithms are illustrated on the example
developped for illustrating kernel Bayes filtering. In figure 9.4 the left
plot depicts the square root of the mean square error as a function of
time. The kernel used is the Gaussian exp(−‖x− y‖2/σ2). Parameters
chosen are σ2 = 1/3.73, λ = 0.09, ε = 0.03. These values were used in
[58] and are taken here for the sake of simplicity. For the left plot, e0 has
been set to 0.55 for the kRLS and the kLMS as well. This choice was
made since it ensures the dictionaries are of the same size on average
for the two algorithms (27 for this value of e0). The convergence curves
were obtained by averaging 500 snapshots. The middle plot displays the
logarithm of the size of the dictionary after convergence as a function
of e0. The same parameter is used here but has a different meaning
for the two algorithms. For the kLMS, the larger the parameter, the
easier the dictionary is increased. For the kRLS, this goes the other way
around. e0 is varied from 0.01 to 1 in a non uniform way. The right plot
shows the asymptotic mean square error (evaluated by averaging the
last 500 samples of the convergence curves, these curves being obtained
by averaging 500 snapshots). Interestingly with these two plots is the
fact that the loss in MMSE is small for a high compression. For example,
in the kRLS, the optimal performance of 0.1 is nearly obtained as soon
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Figure 9.4: Left plot: Square root of the mean square error obtained by the kLMS
and kRLS for the prediction problem studied in the text. The horizontal line marks
the amplitude 0.1 which corresponds to the standard deviation of the dynamical
noise, and is therefore the optimal power to reach. Middle plot: Size of the dictio-
nary at convergence as a function of parameter e0. Right plot: Square root of the
mean square error obtained by the kLMS and kRLS at convergence as a function of
parameter e0.

as e0 = 0.1 , for which the size of the dictionary is only 55! Likewise,
the best performance of the kLMS (about 0.13) is obtained for e0 = 0.7
for which the size of the dictionary is 47. This simple example show
the effectiveness of the algorithms coupled with simple yet powerful
sparsification techniques. These sparsification procedures open up the
use of kernel methods to very large data sets as well as on-line efficient
algorithms.
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