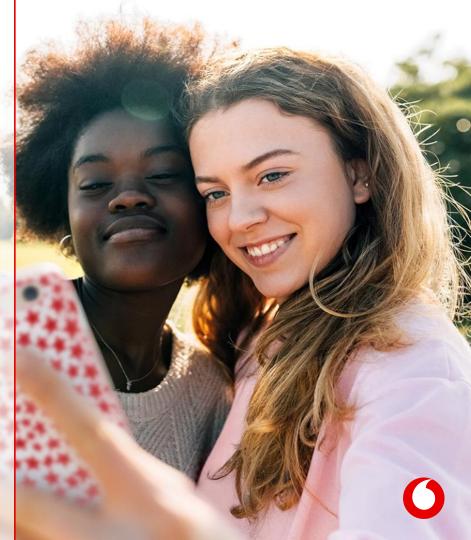
5G Overview and predictive Analysis for Latency Optimized Telecommunication Networks

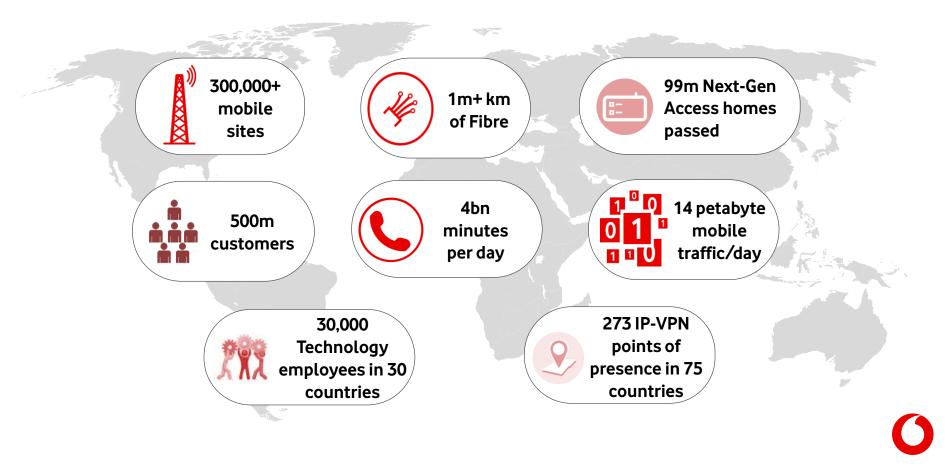
+ 134:23:454:12

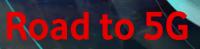
Presented by Andreas Burk, Dennis Lemberg Vodafone Germany Hochschule Rhein Main Ruesselshem, 26th October 2018

B 288


Vodafone is one of the world's largest telecoms operators

26 countries in which we have mobile operations 19 countries in which we have fixed operations **49** Partner Markets


66m IoT connections


100 countries connected by our submarine cables

£61bn market capitalisation (23 November 2017)

Vodafone Technology | Scale and diversity of operation

Evolution of wireless networks

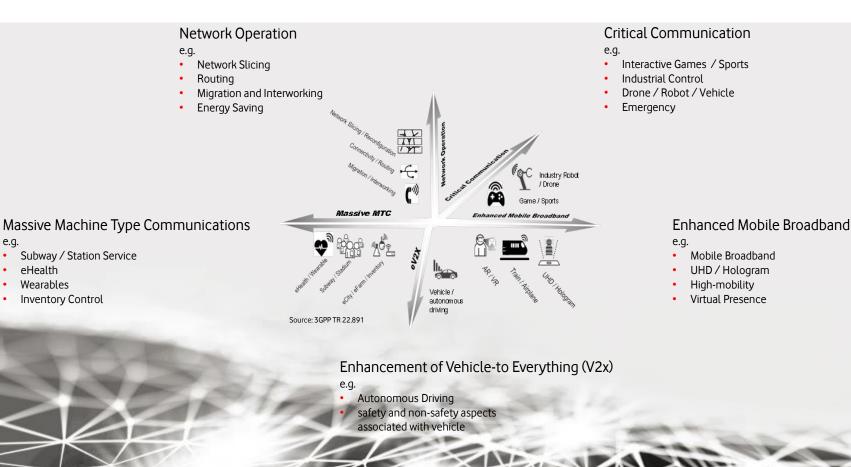
- 1st Generation wireless network
 - Basic voice service
 - Analog based protocols

- 3st Generation wireless network
- Designed for voice with some data consideration (multimedia, text, internet)
- First mobile broadband

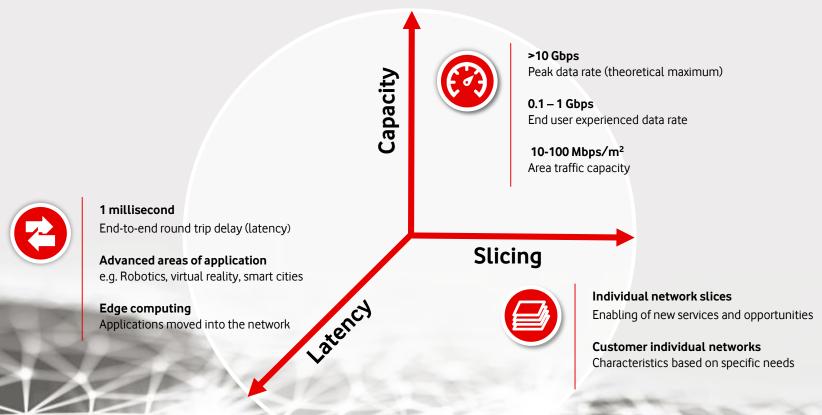
- 2st Generation wireless network
 - Designed for voice
- Improved coverage and capacity
- First digital standards (GSM, CDMA)

Main focus of current wireless networks is voice and data.

- 5st Generation wireless network
- Designed for connection of everything
- low latency, high bandwidth
- less battery consumption


Beside voice and internet services 5G will be developed for new applications which are specified in the 3GPP Release (TR 22.891).

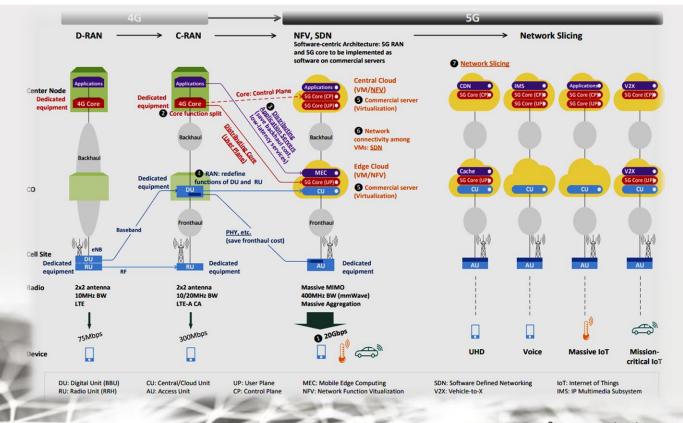
4st Generation wireless network


- Designed primarily for data
- IP-based protocols (LTE)
- True mobile broadband

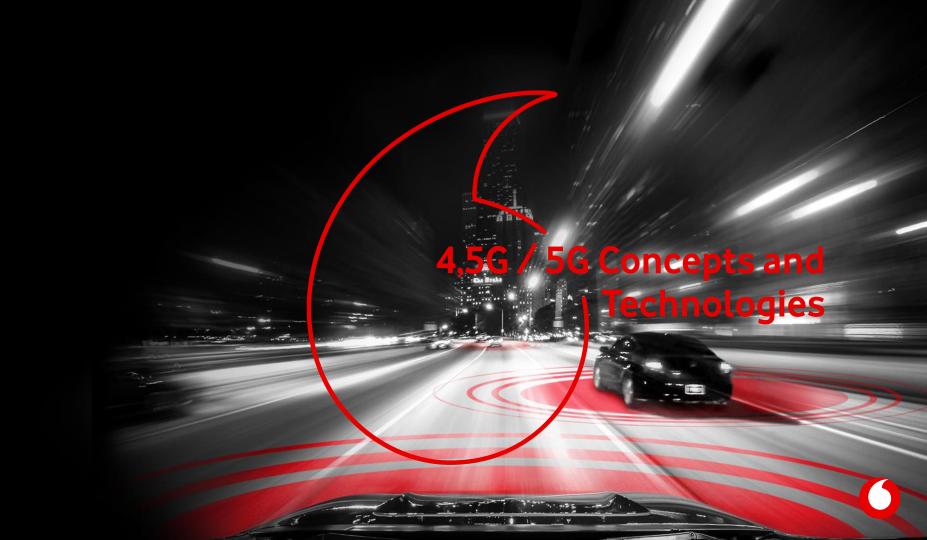
5G | Use Cases an Categories

e.g.

5G | stands for huge capacity, ultra low latency as well as reliability by network slicing


and the second

5G | 3GPP Timeline for 5G

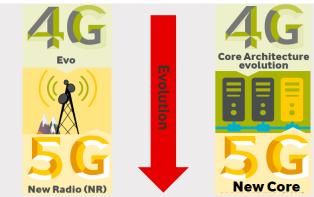


• 5G comes in multiple releases

5G | Network Architecture Evolution: 4G → 5G

Source: www.netmanias.com

5G Architectural Evolution


- 4G Evo act as a bridge to 5G
- 5G encompasses 4G Evo
- For the first time two generations of technologies are going to be closely integrated together

Radio:

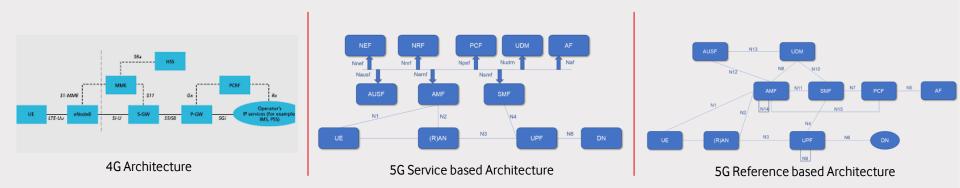
- 5G NR is a new radio standard interface offering data rates higher than 1 Gbps.
- The NR can transmit more data in the same amount of spectrum, as well as utilize more spectrum at once.
- It was defined in the 3GPP standard in Dec' 17.

nologies are going to be Core:

- There are two phases for the Core Network to support the 5G New Radio
- Non Stand Alone (5GNSA)
- Stand Alone (5G SA)

5G | Radio Access

• The "New Radio" cellular technology that is being developed as part of the 5G network is based on a similar design to the existing LTE (4G Evo) technology but:


- it works more efficiently in larger spectrum allocations than 4G Evo.
- the maximum carrier bandwidth in 5G is 100MHz while in 4G is 20 MHz.
- it's able to operate in frequencies up to "millimeter wave" range, as well as in existing cellular frequencies.
- it's has a leaner design allows any future vertical or service specific enhancements to be added more easily, and enables more opportunity for Network energy saving.
- it's able to easily integrates with existing LTE network and at same sites to minimize initial integration cost.

Generation	2G			3G			4G		5G
Funktechnik	GSM	GPRS	EDGE	UMTS	HSPA	HSPA+	LTE	LTE-A	New Radio
Zugriffs- verfahren	TDMA	TDMA	TDMA	CDMA	CDMA	CDMA	OFDMA	OFDMA	OFDMA
Modulations- verfahren	GMSK	GMSK	8-PSK	QPSK	QPSK, 16-QAM	QPSK, 16-QAM	QPSK, 16-, 64-QAM	QPSK, 16-, 64-, 256- QAM	QPSK, 16-, 64-, 256-QAM, 1024-QAM
Bandbreite	0,2 MHz	0,2 MHz	0,2 MHz	5 MHz	5 MHz	5 MHz	1,4-20 MHz	20-100 MHz	35-400 MHz
Kanal- bündelung	nein	bis 8	bis 8	nein	nein	nein	bis 4	bis 4	bis 4
Datenraten	0,01 Mbps	0,1 Mbps	0,2 Mbps	0,4 Mbps	14 Mbps	42 Mbps	150 Mbps	1000 Mbps	>1000 Mbps
Weitere Eigenschaften	-	-	-	-	мімо	MIMO	мімо	MIMO, Carrier Aggregation	MIMO, Carrier Aggregation
Latenzzeit	500 ms	500 ms	300 ms	150 ms	100 ms	50 ms	10 ms	5 ms	1 ms

So unterscheiden sich 2G, 3G, 4G und 5G (GSM, UMTS, LTE und New Radio)

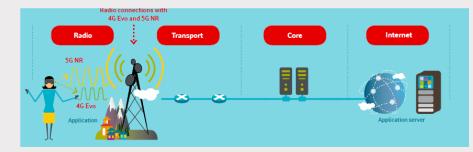
Source: https://www.elektronikpraxis.vogel.de/ index.cfm?pid=7525&pk=729345&fk=1419511&type=article

5G | Core Architecture

- 5G Core Network (5GCN) is a new architecture for the Core Network that is being defined from scratch by 3GPP; if compared to 4G Core Network, it introduces ...
 - ... more flexibility,
 - ... more openness,
 - ... new protocols,
 - ... and will be able to serve all types of 5G radio.

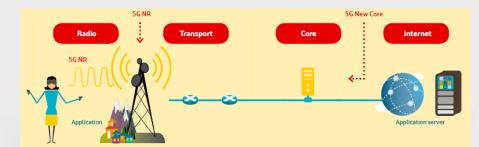
- 5G Core implies a new architecture that:
- maximizes the benefits of Network Functions Virtualization
- Software Defined Networking
- minimizes dependencies with the access networks by introducing a unified authentication framework, unified subscription control, unified QoS framework and charging.

5G | Deployment Scenario


- 3GPP finalized the first implementable specification of "Non-Standalone" 5G NR operation in line with the accelerated plan, in December 2017.
- Operators who are in hurry to deploy 5G will therefore be able to base their early deployments on the specifications on NSA, rather than taking "solo paths" with technology.
- The major 3GPP milestone are:
 - December 2017 Non Standalone New Radio (Rel. 15)
 - June 2018
 - 5G: Standalone 5G New Radio and New Core (Rel. 15)
 - 4G Evo: Further evolution (Rel. 15)
 - December 2018 Further RAN Core Network deployment options (Rel. 15)
 - December 2019 Further evolution of 5G New Radio and 4G Evo (Rel. 16)

• The 3GPP is not only working on 5G New Radio but also in introducing improvements for 4G Evo both as part of te 5G framework.

5G | Deployment Scenario

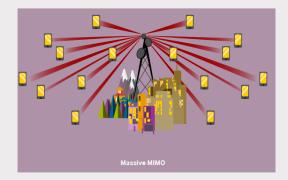

Non Stand Alone (5G NSA)

• In the first phase (as mentioned) the existing 4G core network (EPC) will be used to support the 5G launch, with only minor changes expected for the current core

Stand Alone (5G SA)

• In the second phase the new 5G Core (5GCN) will be introduced. It's currently being standardized in 3GPP and it introduces more flexibility and more functionalities.

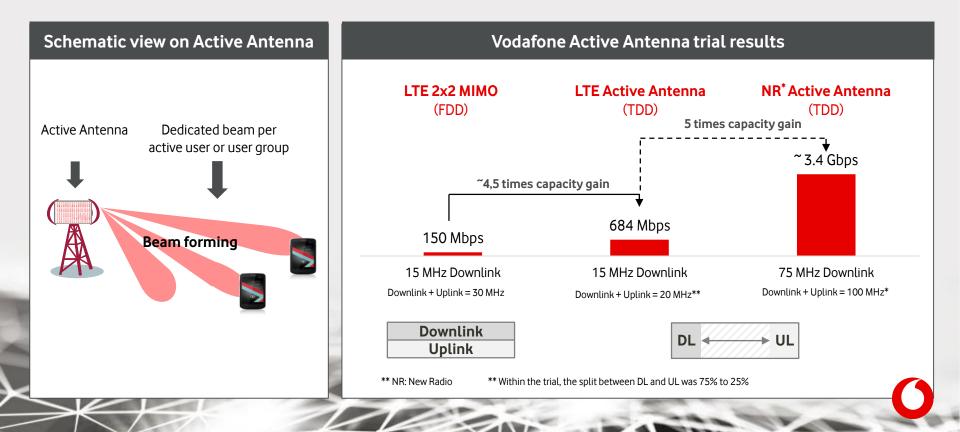
5G Key Technical Dimensions


ATENCY

Capacity & Speed | Data, Speed & Capacity

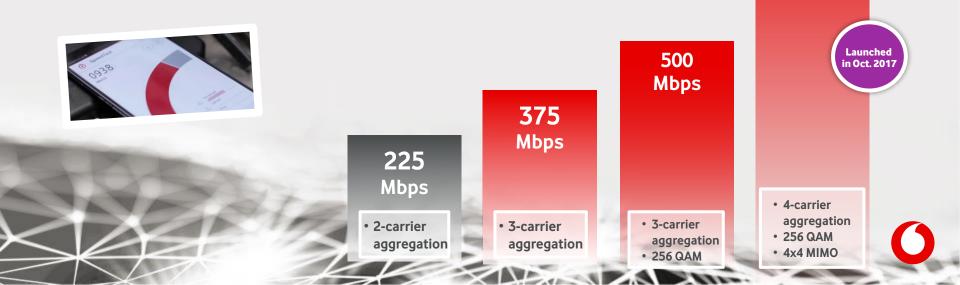
4G Evo and 5G will enable an increase in data rate and capacity.

- Massive MIMO:
 - already available in 4G Evo
 - improves capacity, coverage and user throughput.
 - changed the way a signal is radiated,
 - providing of multiple beams of a signals, where each beam is assigned to a unique user or a group of users
- New Spectrum:
 - max. carrier bandwidth in 5G is 100MHz while in 4G is 20MHz.
- Carrier Aggregation
 - Intra and Inter eNodeB Carrier aggregation



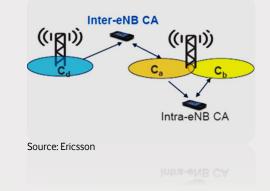
Safety regulations & antenna heights

2018


2022

- Carrier aggregation (CA) is used in LTE Evo in order to increase the bandwidth, and thereby increase the bitrate.
- CA can be used for both FDD and TDD.
- Each aggregated carrier is referred to as a component carrier, CC, which can have a bandwidth of 1.4, 3, 5, 10. 15 or 20 MHz and a maximum of five CC.

Gigabit



CAPACITY & Speed | Inter eNB Carrier Aggregation

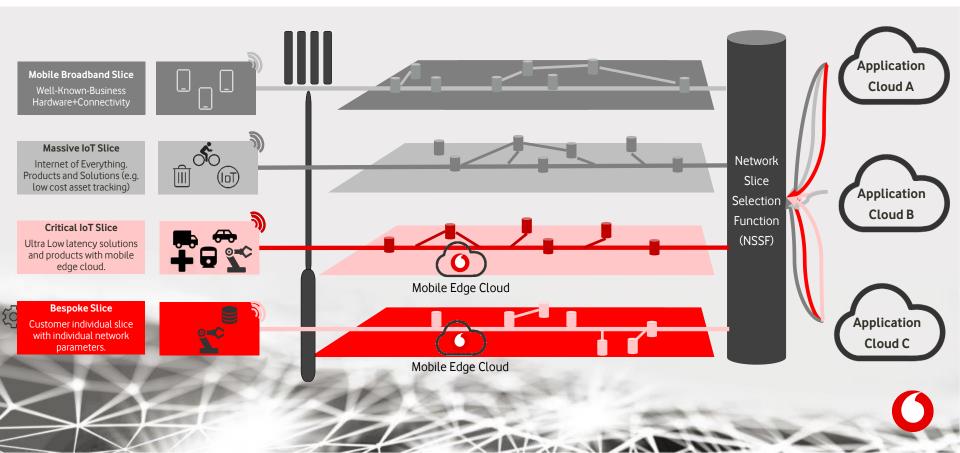
- Inter eNB CA feature enables DL CA between cells not located on the same eNB
- eNB that has the serving cell (Primary eNB) will forward user-data over the X2 interface to the external eNB that has the external Scell (Escell).

Potential Benefits

- The set of cells considered for use as secondary cells is expanded across multiple eNBs. As a result, UEs can find a more nearly optimal set of cells with which to perform carrier aggregation.
- Increase downlink bitrates for CA capable devices also in situations where the user is covered by different eNBs.

5G Key Technical Dimensions

ATENCY

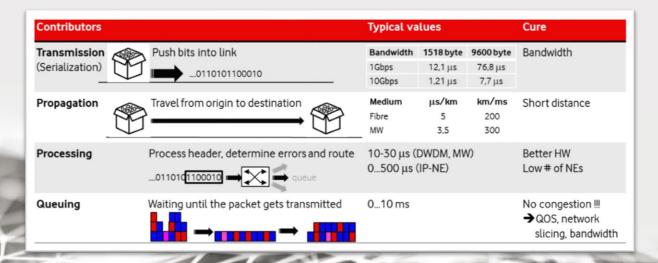


Slicing | Customer & application specific networks

- Through Network Slicing operators can offer specific services to different customers with virtual / logic "network slices" over the same physical network.
- Each slice gets the performance characteristics they require, e.g.
 - guaranteed bandwidth
 - Low latency
 - ...
- The full 5G network slicing capabilities will be introduced together with 5G Core.
- The new 5G core will be able to implement the foundation of the network slicing concept in terms of flexibility, elasticity, automation and security.
- Network slicing is expected to play a critical role in 5G networks because of the multitude of use cases and new services 5G will support (e.g. V2X)

Slicing Customer & application specific networks

5G Key Technical Dimensions



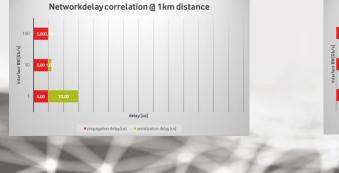
- Latency is basically the time it takes for a message, or packet, to travel from is point of origin to the point of destination.
- There are many of contributing components for the overall latency:

Latency = **\Sigma** {transmission delay¹, propagation delay², processing delay³, queuing delay⁴}

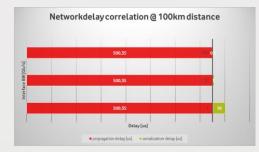
Latency | What is latency - Transmission / Serialization Delay

The transmission / serialization delay decrease if the interface bandwidth will be increased.

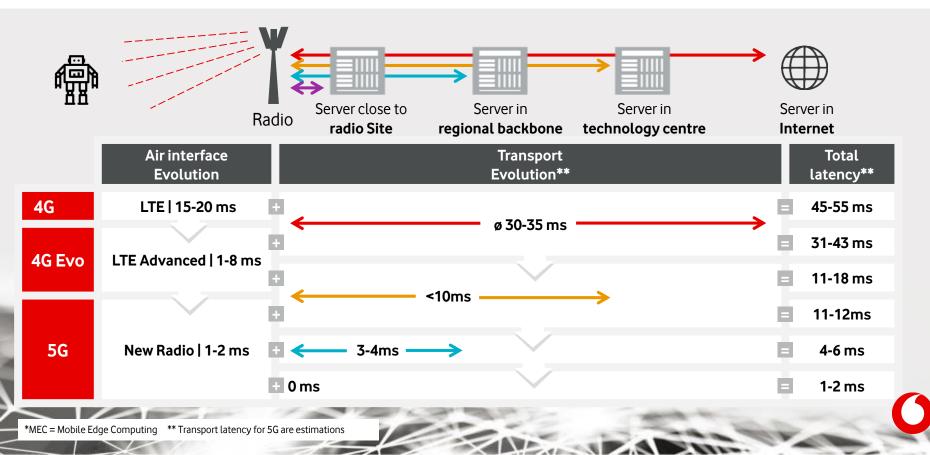
Basic assumptions:


Ideal source is sending 1250 Byte (10.000Bit) to a reciever at a distance

- a. 1km
- b. 10km
- c. 100km


With ingreasing distance the transmission / Serialization delay is negligible.

Conclusion:


at one point in time a bandwidth increase will not significantly reduce the latency. To reduce latency the transport distance needs to be shorten.

Latency | Air interface and transport evolution as enabler for ultra low latency

The Planning Tool "Networks" Predictive latency calculation

Prover and and a

25

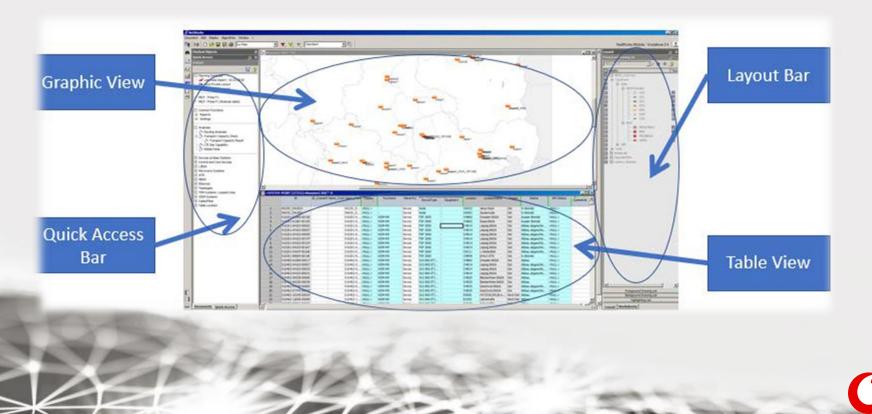
* * 🐨

Networks | What is it used for?

• Analysis

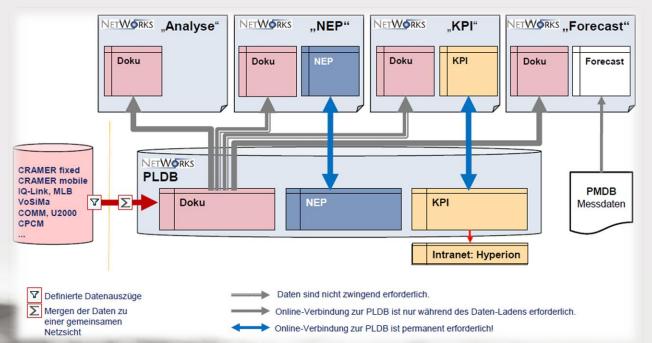
- graphic and table view

Calculation


- macro for automatic tasks

Evolution

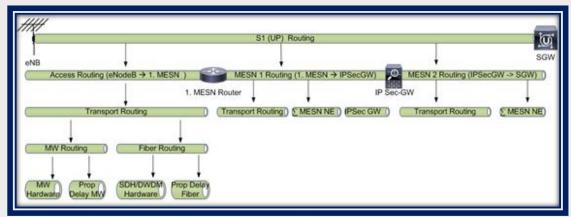
– high level design network



AVE. SP.A PHIL

Networks | Architecture

Analyse


working with documentation

• NEP

- high level design for a future network
- KPI
 - compare KPI with Network
- Forecast
 - documentation and measurement database

Networks | Implementation of latency analysis

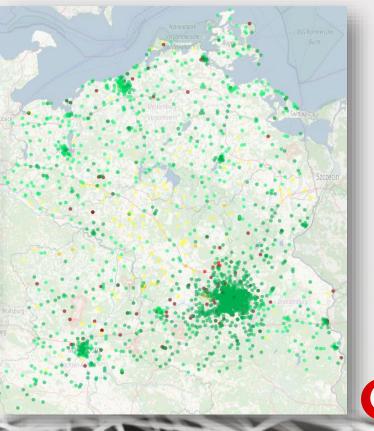
Task

- calculation of end-to-end-delay from Base Station to S-GW
- considering used technology
 - microwave transmission
 - fiber cable routing
 - processing delay in nodes

Networks | High level Design of the Framework

• Die Berechnung der Latenz basiert auf einer Auswertung der Abhängigkeiten (Routing/Führung) über alle Netzschichten hinweg.

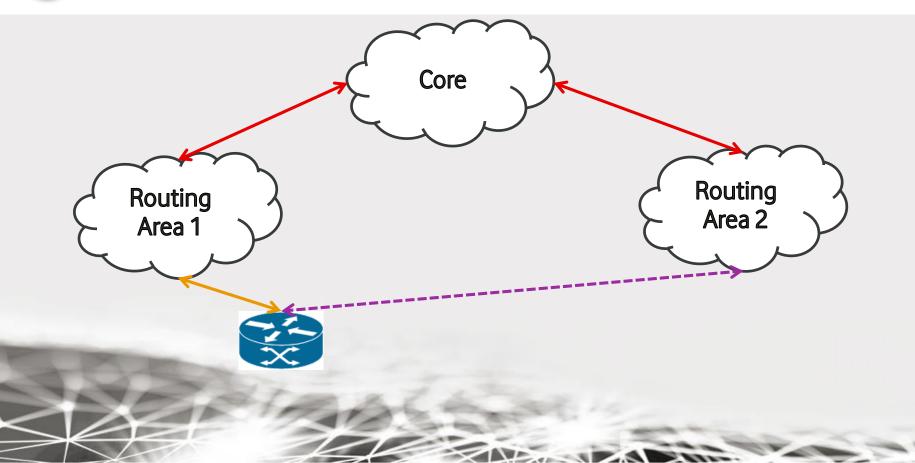
Routing Stack	Algorithmus		Eingangsdaten
4G Network (LTE)	Import Netzdaten	Entfernungsberechnung auf Basis des Routing aller darunter liegender Schichten	 IP Routing over SDH, DWDM or fiber Transit and terminating nodes SDH
		¥	 Routing over DWDM or fiber
Packet-based Network		Summe Knotendelay am S1-Interface	 Transit and terminating nodes DWDM
(IP/MPLS)		Ļ	 Routing over fiber
Eth/WDM Transport		Summe Routingentfernung am S1-Interface	 Transit and terminating nodes Fiber Actual fiber length
Network		*	Microwave
Fiber Network	12	Berechnung der Latenz aus Transitknoten und Ende-zu- Ende Routingentfernung	 Coding scheme, bandwidth and distance


Networks | flexibility within the Latency-Framework

ter Analysis	C.Calculate-Edge Structure-Create Full-Meshing Edges, Nodes and Items Options and Parameters
are are Router with Display=MARKED, traffic marix for those nodes will be generated Router are marked, full traffic marix will be generated (fall back)	Edge Group:
s_MESN. call macro: <mesn_defineareas:end mesn_defineareas=""> \\Client \F\$\NetWorks\00.Data \Delay_Analyse.mac calmmeen: <mesncreateflows:end mesncreateflows=""> \\Client \F\$\NetWorks\00.Data \Delay_Analyse.mac</mesncreateflows:end></mesn_defineareas:end>	Define Potential Connections
call macro: <mesnrouting:end mesnrouting=""> \\Client\F\$\NetWorks\UU.Data\Delay_Analyse.mac call macro: <evaluatemesn:end evaluatemesn=""> \\Client\F\$\NetWorks\00.Data\Delay_Analyse.mac call macro: <report_latency_mesn:end report_latency_mesn=""> \\Client\F\$\NetWorks\00.Data\Delay_Analyse.mac</report_latency_mesn:end></evaluatemesn:end></mesnrouting:end>	Use Existing Weights/Lengths
call macro: <report_latency_mesn:end report_latency_mesn="">\/Client\F\$/NetWorks\00.Data\Delay_Analyse.mac</report_latency_mesn:end>	Write Lengths of the Created Edges in km
	Edge Length:
	Write Common Value For New Edges
	Item: Display
Exections Control of the second	C Parameter:
	Write Common Value For Ex. Edges Contained in the Result
Hierarchy Hierarchy D Configuration Measuring Data Herenald	Vinte Common Value For Ex. Edges Contained in the Result
	Node Group 1: Node Group 2: SYSTEM-POINT SYSTEM-POINT
SAPATE ALL.	Selection Selection ◆ Functions {IP-Router} { }
	Selection Selection Functions (IP-Router) Selection Functions (CE-Router, PE-F ())
	SYSTEM-POINT SYSTEM-POINT

Networks | Output

			Latency in µs					
Region	SecGW	S-GW	Komplett	Access		MPS/POS -> SecGW	SecGW <-> S-GW	
		T.	μs 🔻	μs	v	μs 🔻	μs	-
odeB1 Region :	1 SecGW 1	S-GW1	3.727,89	335,	10	3.159,05	233,	4
					1.1.1.1.1	eNode • 0 • 3 • 4! • 55 • 6,5 . • 7,25 • 8 • 10 • 15	B by Lateno 3 ms 4 ms	



- Which impact has a rehoming of a router for the latency?
 - Is it better to rehome a router for a eNodeB site?
 - Are the routing areas up to date?
 - What is the impact for mobile traffic?
- How can Networks support me?
 - 1) Find an IP-Route which is an excact copy of the new E2E Route
 - 2) build your route with partial DWDM routes

- What is the impact for one router rehoming?
 - 1) Find an IP-Route which is an excact copy of the new E2E Route

route	start location	destination location	latency (µs)
routing 1	router	core	2013,44
routing 2	router	core	4441,61

- 2) build your route with partial DWDM routes

route	start location	destination location	latency (µs)
routing 1	router	core	2013,44
routing 2 part 1	router	1st DWDM Hop	3179,3
routing 2 part 2	1st DWDM Hop	2nd DWDM Hop	871,9
routing 2 part 3	2nd DWDM Hop	core	319,9
routing 2	router	core	4371,1

Rehoming is not an option

Networks | Conclusion

- Through the embedded predective latency analysis in networks Vodafone is able to plan a cost optimized network solution during the planning stage.
- Furthermore planed changes in the network design can be investigated in advanced in terms of latency.
- The included framework can be adapted for various use cases
- The current implementation needs a deep knowledge in macro operation

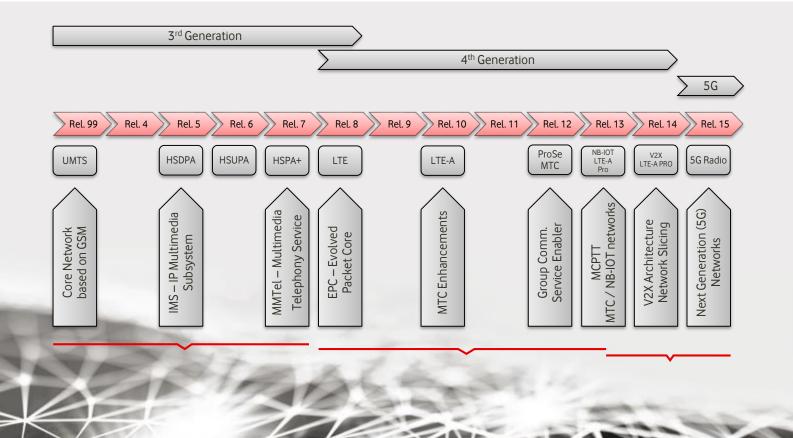
Outlook

Implementing of wizards for various use cases

Thank you for your attention...

Dennis Lemberg B. Eng. Network Planning Engineer MESN & IP Planning

Vodafone GmbH Kammerstück 17 44357 Dortmund +49 172 5608155 dennis.lemberg@vodafone.com vodafone.de


Dipl.- Ing.(FH) Andreas Burk Gruppenleiter MESN & IP Planning

Vodafone GmbH, Düsseldorfer Str. 15, 65760 Eschborn +49 152 2269 5741 andreas.burk@vodafone.com vodafone.de

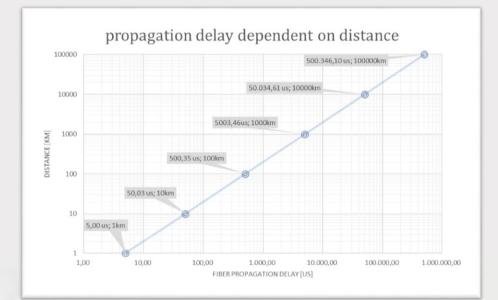
> Diese Folien/Dokumente sind durch das Urheberrecht geschützt. Eine Vervielfältigung ist nur mit Genehmigung des Verfassers gestattet. Dieser Urheberrechtshinweis darf nicht entfernt werden.

History of System Architecture

5G | 5G Ready Network

- When should the 5G logo be shown?
- A survey and discussion among operator members of the 5G introduction project indicates that four configurations should be supported for deciding when to present a 5G logo.
- The configuration are presented from most restrictive to most relaxed configuration.
- Adoption is decided according to operator and regional regulatory requirement.

ĭ₁|| 5G


State	Config. A	Config. B	Config. C	Config. D
1 (IDLE under or Connected to LTE cell not supporting NSA)	4G	4G	4G	4G
2 (IDLE under or Connected to LTE cell supporting NSA and no detection of NR coverage)	4G	4G	4G	5G
3 (Connected to LTE only under LTE cell supporting NSA and detection of NR coverage)	4G	4G	5G	5G
4 (IDLE under LTE cell supporting NSA and detection of NR coverage)	4G	5G	5G	5G
5 (Connected to LTE + NR under LTE cell supporting NSA)	5G	5G	5G	5G
6 (IDLE under or connected to NG-RAN while attached to 5GC)	5G	5G	5G	5G

Source: 3GPP RP-172168

 $T_{prop delay} = \frac{l}{c_0 \mu}$

l = length in km $c_0 = speed of light$ $\mu = refractive index$

