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1 Introduction

Motivated by the study of the valuation theory of deeply ramified fields [K-R]
recently there has been some interest in describing the structure of the mod-
ule ΩOL|OK

of Kähler differentials of an extensionOL|OK of valuation domains
induced by a finite extension (L|K, v) of valued fields – see [C-K], [C-K-R].
The obstacles in doing so of course are the fact that the valuation domains
in general are non-noetherian and that the extension OL|OK needs not be
essentially of finite type. Consequently the �classical� theory of differentials
is not sufficient to describe the structure of ΩOL|OK

but must be, so it seems,
complemented by rather delicate limit arguments as in [Tha1], [Tha2] and
[C-K]. In this context the modest goal of the present article is to describe
the structure of ΩOL|OK

assuming that it is a finitely generated respectively
finitely presented OL-module and to relate the result to the general theory
of modules over valuation domains.

The OL-module ΩOL|OK
is finitely generated, even finitely presented, for

essentially finitely generated extensions OL|OK , which however is a rather
restrictive property as the subsequent result shows. The notation used is
the same as in the article [C-K]. In particular: vK ⊆ vL denote the value
groups and Kv ⊆ Lv the residue fields of v; moreover Kh ⊆ Lh denote the
henselizations with respect to v.

Theorem 1.1 ([C-N], Theorem 1.5, [Dat], Theorem 1.2): For a finite
extension of valued fields (L|K, v) the following properties are equivalent:

1. The ring extension OL|OK is essentially finitely generated.

2. [Lh : Kh] = (vL : vK)[Lv : Kv] and (vL : vK) = ε(vL|vK), where

ε(vL|vK) := |{δ ∈ vL≥0 : ∀γ ∈ vK>0 δ < γ}|.
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Note that the condition (vL : vK) = ε(vL|vK) appearing in Theorem
1.1 implies that the maximal ideals MK and ML of OK and OL are principal
ideals if (vL : vK) > 1. This fact will be used frequently in the sequel.

In the concrete case of a finite extension OL|OK , which is covered by
Theorem 1.1, the main result of the present article is:

Theorem 1.2: Let (L|K, v) be a finite extension of valued fields for which
the ring extension OL|OK is finite. Let p := char(Kv) and e := (vL : vK).
A description of the structure of the differential module ΩOL|OK

is then given
by the following list:

1. e = 1 and Lv|Kv is separable: ΩOL|OK
= 0.

2. e > 1 and Lv|Kv is separable:

ΩOL|OK
= OL dt ∼= OL/(x),

where ML = tOL and vx = v(f ′(t)) for the minimal polynomial
f ∈ Kur[X] of t over the maximal unramified subextension Kur|Kh

of Lh|Kh.

In particular: vx = (e− 1)vt if p = 0 or p - e.

3. e = 1 and Lv|Kv is not separable:

ΩOL|OK
= OL dt1 ⊕ . . .⊕OL dtm,

where t1v, . . . tmv form a p-basis of Lv|Kv.

4. e > 1 and Lv|Kv is not separable:

ΩOL|OK
= OL dt⊕OL dt1 ⊕ . . .⊕OL dtm,

where the elements t, t1, . . . , tm are chosen as in points 2 and 3.

The summands OL dti appearing in points 3 and 4 are isomorphic to OL/(xi)
for certain xi ∈ OL \O×L .

If L|K is separable, then x 6= 0 (point 2) and xi 6= 0 for all i (points 3
and 4).

If L|K is not separable, then in point 3 precisely [L : K(Lp)] of the
elements x1, . . . , xm are equal to 0. In point 4 the same holds for the elements
x, x1, . . . , xm.
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2 Results on finitely generated differential modules ΩOL|OK

Let (L|K, v) be an extension of valued fields and let OL|OK be the induced
extension of valuation domains. The Theorems 4.5 and 4.7 in [C-K] seem to
indicate that the OL-module ΩOL|OK

of Kähler differentials is rather rarely
finitely generated. It is therefore worthwhile to investigate the implications
this property has on the structure of the extension (L|K, v).

Theorem 2.1: Suppose that the differential module ΩOL|OK
of the exten-

sion OL|OK of valuation domains is finitely generated and let p := char(Kv).
Then

� in the case p = 0 the transcendence degree trdeg (Lv|Kv) is finite,

� in the case p 6= 0 the degree [Lv : Kv(Lvp)] is finite.

Let t1, . . . , tm ∈ OL be elements such that either t1v, . . . , tmv is a transcen-
dence basis of Lv|Kv (p = 0) or is a p-basis of Lv|Kv (p 6= 0). Then

1. ΩOL|OK
= OL dt1 ⊕ . . . ⊕ OL dtm if (vL : vK) = 1 or (vL : vK) >

ε(vL|vK),

2. ΩOL|OK
= OL dt⊕OL dt1 ⊕ . . .⊕OL dtm, where tOL = ML, if

(vL : vK) = ε(vL|vK) > 1.

Proof: For a separable residue field extension Lv|Kv the sequence of
Lv-vector spaces

0→ML/(M
2
L +MKOL)→ ΩOL|OK

/MLΩOL|OK

ψ→ ΩLv|Kv → 0 (1)

is exact – see [Kun], Corollary 6.5. Consequently the dimension of ΩLv|Kv is
finite, which implies that there exists a basis dt1, . . . , dtm of ΩLv|Kv. In the
case p = 0 the elements t1, . . . , tm then form a transcendence basis of Lv|Kv,
which proves the first assertion of the theorem.

In the case of an inseparable residue field extension Lv|Kv the sequence
of Lv-vector spaces

0→ML/(M
2
L +M ′OL)→ ΩOL|OK

/MLΩOL|OK

ψ→ ΩLv|Kv → 0, (2)

is exact, where M ′ := ML ∩ OK [Op
L], – see [Kun], Theorem 6.7. Again

this yields the existence of a basis dt1, . . . , dtm of ΩLv|Kv, but since p 6= 0
the elements t1, . . . , tm this time form a p-basis of Lv|Kv, which proves the
second assertion of the theorem.
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The homomorphism ψ in the sequences (1) and (2) is defined by
x dy + MLΩOL|OK

7→ xv dyv. Therefore it is possible to lift the differen-
tials dti to differentials dti ∈ ΩOL|OK

; the family dt1, . . . , dtm then is linearly
independent over OL.

In the case (vL : vK) = 1 the equation MKOL = ML holds, which implies
ML/(M

2
L +MKOL) = 0 and ML/(M

2
L +M ′OL) = 0 for p 6= 0. Consequently

the exact sequences (1) and (2) yield

ΩOL|OK
= OL dt1 ⊕ . . .⊕OL dtm

by the assumption that ΩOL|OK
be finitely generated and Nakayama’s lemma.

In the case (vL : vK) > ε(vL|vK) the maximal ideal ML is not finitely
generated, hence M2

L = ML holds, which implies ML/(M
2
L+MKOL) = 0 and

ML/(M
2
L +M ′OL) = 0 for p 6= 0. Then the same reasoning as above applies.

Altogether the assertion 1 of the theorem is proved.

Finally suppose (vL : vK) = ε(vL|vK) > 1 holds. Then ML = tOL for
some t ∈ OL, which shows that ML/(M

2
L+MKOL) and ML/(M

2
L+M ′OL) for

p 6= 0 are generated by the respective residue class of t. The homomorphism
φ is defined by

x+ (M2
L +MKOL) 7→ dx+MLΩOL|OK

and similarly in the inseparable case. Consequently the exact sequences (1)
and (2) yield that

dt+MLΩOL|OK
, dt1 +MLΩOL|OK

, . . . , dtm +MLΩOL|OK

form a basis of ΩOL|OK
/MLΩOL|OK

, which again by Nakayama’s lemma im-
plies the assertion 2 of the theorem. 2

Given Theorem 2.1 in order to understand the structure of ΩOL|OK
it

is necessary to determine the annihilators Ann (ds), s ∈ {t, t1, . . . , tm}. In
particular the number r among these annihilators equal to 0 determines a
decomposition of ΩOL|OK

into its torsion submodule and a free complement.
Such a decomposition exists in general for finitely generated modules over
valuation domains:

Proposition 2.2: Let N be a finitely generated module over the valua-
tion domain O and let T be the submodule of torsion elements of N . Then
N = T ⊕ F , where F ∼= Or for some r ∈ N0.

Proof: Any finitely generated, torsion-free module N over O is free:
choose preimages b1, . . . , br ∈ N of a basis of the O/M -vector space N/MN ,
where M is the maximal ideal of O. Then N = Ob1 ⊕ . . .⊕Obr.
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In general the factor module N/T is torsion-free hence free, which implies
that the exact sequence 0→ T → N → N/T → 0 splits. 2

For differential modules ΩOL|OK
the rank r of the free component in

Proposition 2.2 can be determined. For a large class of extensions OL|OK it
is equal to 0:

Proposition 2.3: For a separable, algebraic extension (L|K, v) of valued
fields the differential module ΩOL|OK

is a torsion module.

Proof: It suffices to show that all exact differentials dx are torsion ele-
ments. Let f ∈ K[X] be the minimal polynomial of x over K. Then there
exists λ ∈ OK \ 0 such that λf ∈ OK [X]. The separability of x over K yields
λf ′(x) 6= 0. The equation

λf ′(x) dx = d(λf(x)) = 0

therefore shows that dx is a torsion element. 2

It remains to consider the case of an inseparable extension L|K.

Proposition 2.4: Let (L|K, v) be a valued field extension of characteris-
tic p 6= 0 and suppose that the differential module ΩOL|OK

is finitely generated.
If ΩOL|OK

= T ⊕ F , F ∼= Or
L is the decomposition of ΩOL|OK

according to
Proposition 2.2, then pr = [L : K(Lp)].

Proof: Localization with respect to OL \ 0 yields

ΩL|OK
∼=L ΩOL|OK

⊗OL
L ∼=L (T ⊕Or

L)⊗OL
L ∼=L L

r.

Now ΩL|OK
= ΩL|K and by [Kun], Proposition 5.7 the differential module

ΩL|K is an L-vector space of dimension r, where pr = [L : K(Lp)]. 2

Theorem 2.1 shows that the OL-module ΩOL|OK
is isomorphic to a module

of the form
OL/I1 ⊕ . . .⊕OL/I`, (3)

where Ik are proper ideals of OL. The following result of Salce and Zanardo
shows, that the ideals Ik are uniquely determined by ΩOL|OK

:

Theorem 2.5 ([F-S], Ch.V, Theorem 5.5): Let N be a finitely generated
module over the valuation domain O and suppose that

0 =: U0 ⊂ U1 ⊂ . . . ⊂ U` := N and 0 =: V0 ⊂ V1 ⊂ . . . ⊂ V`′ := N

are chains of pure submodules of N such that the modules Ui+1/Ui and Vi+1/Vi
are generated by one element. Then ` = `′ and there exists a permutation σ ∈
S` such that Vi+1/Vi ∼= Uσ(i)+1/Uσ(i) for all i. In particular the annihilators
Ann (Ui+1/Ui) up to their order are independent of the particular chain of
submodules.
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Corollary 2.6: The annihilator ideals Ann (ds), s ∈ {t, t1, . . . , tm},
appearing in Theorem 2.1 up to their order do not dependent on the choice
of the elements t, t1, . . . , tm.

Proof: Direct summands of a module are pure. Hence Theorem 2.1
gives a chain of pure submodules in ΩOL|OK

as in Theorem 2.5. The annihi-
lator ideals of this chain are the ideals Ann (ds), s ∈ {t, t1, . . . , tm}. 2

3 Results on finitely presented differential modules ΩOL|OK

For an extension OL|OK of valuation domains the differential module ΩOL|OK

is a finitely generated OL-module provided that OL is an essentially finitely
generated OK-algebra. In this case one actually gets a much stronger result
that can simplify the computation of the annihilators of the differentials
appearing in Theorem 2.1.

Proposition 3.1: Suppose that the extension OL|OK of valuation do-
mains is essentially finitely generated. Then the differential module ΩOL|OK

is a finitely presented OL-module.

Proof: The ring OL has the form OL = Aq for some prime ideal q of a
finitely generated OK-algebra A ⊆ Frac (OL). It suffices to show that ΩA|OK

is a finitely presented A-module. Every flat, finitely generated algebra over
a valuation ring is finitely presented – see [Nag-1], Theorem 3. Moreover for
modules over valuation domains flatness and being torsion-free are equiva-
lent. Thus there exists a presentation

0→ (f1, . . . , fr)→ S → A→ 0,

where S := OK [X1, . . . , Xm] is the polynomial ring in m indeterminates over
OK . The corresponding conormal sequence

(f1, . . . , fr)/(f1, . . . , fr)
2 → ΩS|OK

⊗S A→ ΩA|OK
→ 0

is exact. Since ΩS|OK
is a free S-module possessing the basis dX1, . . . , dXm,

the tensor product ΩS|OK
⊗SA is a free A-module, thus proving the assertion.

2

Recall that a module N over a commutative ring R is called coherent, if
every finitely generated submodule of N is finitely presented. A commutative
ring R is coherent, if it is coherent as an R-module. Valuation domains are
coherent rings, since their finitely generated ideals are principal.
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Corollary 3.2: For every ω ∈ ΩOL|OK
the annihilator Ann(ω) is a

principal ideal of OL.

Proof: Every finitely presented module over a coherent ring is coher-
ent – see [Gla], Theorem 2.3.2. Proposition 3.1 thus yields that ΩOL|OK

is
coherent. Consequently in the exact sequence

0→ Ann(ω)→ OL → OLω → 0

the module OLω is finitely presented, therefore Ann(ω) is finitely generated
thus principal. 2

As a consequence of this corollary and Theorem 2.1 a finitely presented
differential module ΩOL|OK

is isomorphic to an OL-module of the form

OL/(x1)⊕ . . .⊕OL/(x`), x1, . . . , x` ∈ OL \O×L .

This is in fact a special case of a structure theorem by R. B. Warfield:

Theorem 3.3 ([F-S], Ch. I, Theorem 7.9): Let N be a finitely presented
module over a valuation domain O and let ` ∈ N be the minimal number of
generators of N . Then there exist elements x1, . . . , x` ∈ O \O× such that

N ∼= O/(x1)⊕ . . .⊕O/(x`).

The ideals (x1), . . . , (x`) are uniquely determined by N up to their order.

Remark: A principal ideal (x) of a valuation domain O with associated
valuation v : K → vK ∪ ∞ is determined by the value vx. Moreover one
can assume that the ideals (xi) appearing in Theorem 3.3 form a descending
chain. Then the assignment

O-Modfp → F (vL>0), N 7→ [N ] := (vx1, . . . , vx`), (4)

where O-Modfp is the class of finitely presented O-modules and

F (vL>0) := {(γ1, . . . , γ`) : ` ∈ N, γi ∈ vK ∪∞, 0 < γ1 ≤ . . . ≤ γ`} (5)

maps isomorpism classes bijectively to F (vL>0).

The invariants [N ] of a finitely presented module are invariant under base
change to the henselization, which is of particular interest in the case of a
differential module:
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Theorem 3.4: Let OL|OK be a unibranched extension of valuation do-
mains and let Oh

K and Oh
L be their respective henselizations. Then

ΩOh
L|O

h
K

∼= ΩOL|OK
⊗OK

Oh
K .

Consequently if
ΩOL|OK

∼= OL/(x1)⊕ . . .⊕OL/(x`),

then
ΩOh

L|O
h
K

∼= Oh
L/(x1)⊕ . . .⊕Oh

L/(x`).

Proof: By [Nag-2], Theorem 43.17 the henselizationOh
L as anOL-algebra

is isomorphic to the tensor product OL ⊗OK
Oh
K , hence

ΩOh
L|O

h
K

∼= ΩOL⊗OK
Oh

K |O
h
K

∼= ΩOL|OK
⊗OK

Oh
K .

Since the extension Oh
K |OK is flat, for x ∈ OL one has

OL/xOL ⊗OK
Oh
K
∼= OL ⊗OK

Oh
K/xOL ⊗OK

Oh
K
∼= Oh

L/xO
h
L,

which proves the second assertion of the theorem. 2

Corollary 3.5: Let (L|K, v) be a finite extension of valued fields with
the properties: Lv|Kv is separable, OL|OK is finite and (vL : vK) > 1.
Then ΩOL|OK

∼= OL/(x) with an x ∈ OL such that vx = v(f ′(t)), where
tOL = ML and f ∈ Kur[X] is the minimal polynomial of t over the maximal
unramified subextension Kur|Kh of Lh|Kh. (The unique extension of v to the
henselization Lh is again denoted by v.)

In particular in the case char(Kv) =: p = 0 or p - (vL : vK) =: e one has
vx = (e− 1)vt.

Proof: By assumption Lv = Kv(θ) and the minimal polynomial g of
θ over Kv is separable. Let g ∈ Oh

K [X] be a monic polynomial with the
property deg(g) = deg(g) and gv = g. Then g is irreducible over Kh and by
Hensel’s Lemma has a simple root θ ∈ Oh

L with θv = θ. Consequently the
field extension Kh(θ)|Kh is separable of degree [Kh(θ) : Kh] = [Lv : Kv].

By Theorem 1.1 the degree of the extension Lh|Kh is given by

[Lh : Kh] = (vL : vK)[Lv : Kv],

hence [Lh : Kh(θ)] = (vL : vK) = ε(vL|vK); in particular Kur = Kh(θ).
Since (vL : vK) = (vLh : vKh) and ε(vL|vK) = ε(vLh|vKh), for every

t ∈ OL with tOL = ML one gets OLh = OKur [t], therefore

ΩO
Lh |OKur

∼= OLh/(f ′(t)),
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where f ′ is the minimal polynomial of t over Kur.
In the exact sequence

ΩOKur |O
Kh
⊗OKur OLh → ΩO

Lh |OKh
→ ΩO

Lh |OKur → 0

by Proposition 6.8 in [Kun] ΩOKur |O
Kh

= 0, hence ΩO
Lh |OKh

∼= ΩO
Lh |OKur .

Theorem 3.4 now yields

ΩOL|OK
∼= OL/(x), vx = v(f ′(t)).

If p = 0 or p - e, then the extension Lh|Kur and thus

f = Xe + ae−1X
e−1 + . . .+ a1X + a0

are separable. Since Kur is henselian the conjugates σ(t), σ : Lh → K̃h a
Kur-embedding of Lh into the algebraic closure of Kh, all possess the same
value. Therefore v(ai) ≥ (e−i)v(t) for all i. Since v(t) is the minimal positive
value of vL this implies

v(f ′(t)) = min(v(e) + (e− 1)v(t), v(iait
i−1) : i ∈ {1, . . . , e− 1})

= (e− 1)v(t).

2

The ingredients for the proof of Theorem 1.2 are now available:

� Assertion 1 follows from [Kun], Proposition 6.8.

� Assertion 2 is Corollary 3.5.

� Assertion 3 follows from point 1 of Theorem 2.1.

� Assertion 4 follows from point 2 of Theorem 2.1.

� The statement about the structure of the summands OL dti follows from
Corollary 3.2.

� The statement about the number of zero-elements among x, x1, . . . , xm
is a consequence of the Propositions 2.3 and 2.4.
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