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1 INTRODUCTION

Motivated by the study of the valuation theory of deeply ramified fields [K-R]
recently there has been some interest in describing the structure of the mod-
ule Qo, |0, of Kahler differentials of an extension O1|Og of valuation domains
induced by a finite extension (L|K,v) of valued fields — see [C-K], [C-K-R].
The obstacles in doing so of course are the fact that the valuation domains
in general are non-noetherian and that the extension Op|Og needs not be
essentially of finite type. Consequently the >classical< theory of differentials
is not sufficient to describe the structure of {29, 0, but must be, so it seems,
complemented by rather delicate limit arguments as in [Thal], [Tha2] and
[C-K]. In this context the modest goal of the present article is to describe
the structure of Qo, o, assuming that it is a finitely generated respectively
finitely presented Op-module and to relate the result to the general theory
of modules over valuation domains.

The Op-module Qo, 0, is finitely generated, even finitely presented, for
essentially finitely generated extensions Op|Oj, which however is a rather
restrictive property as the subsequent result shows. The notation used is
the same as in the article [C-K]. In particular: vK C vL denote the value
groups and Kv C Lv the residue fields of v; moreover K h"C LM denote the
henselizations with respect to v.

THEOREM 1.1 ([C-N], Theorem 1.5, [Dat], Theorem 1.2): For a finite
extension of valued fields (L|K,v) the following properties are equivalent:

1. The ring extension Op|Of is essentially finitely generated.
2. [L" : K" = (vL : vK)[Lv : Kv] and (vL : vK) = e(vL|vK), where

e(vL|vK) = |{6 € vL=" : ¥y € vK~% § < 7}



Note that the condition (vL : vK) = e(vL|vK) appearing in Theorem
1.1 implies that the maximal ideals Mg and M, of Ok and Oy, are principal
ideals if (vL : vK) > 1. This fact will be used frequently in the sequel.

In the concrete case of a finite extension Op|Og, which is covered by
Theorem 1.1, the main result of the present article is:

THEOREM 1.2: Let (L|K,v) be a finite extension of valued fields for which
the ring extension Or|Ok is finite. Let p := char(Kv) and e := (vL : vK).
A description of the structure of the differential module Qo, |0, 1s then given
by the following list:

1. e =1 and Lv|Kv is separable: Qo, |0, = 0.

2. e>1 and Lv|Kwv is separable:
QOL|OK = OL dt = OL/(HZ'),

where My = tOp and ve = v(f'(t)) for the minimal polynomial
f € KY[X] of t over the mazimal unramified subextension K™|K"
of L"|K™".

In particular: ve = (e —1)vt if p=0 orpte.
3. e =1 and Lv|Kwv is not separable:
Qo,lox =O0rdti © ... © Opdty,,
where tv, ... tuv form a p-basis of Lv|Kwv.

4. e >1 and Lv|Kv is not separable:
QOL\OK = OL dt ® OL dtl D...D OL dtm,
where the elements t, ty,...,t,, are chosen as in points 2 and 3.

The summands Oy, dt; appearing in points 3 and 4 are isomorphic to Or/(x;)
for certain z; € Op \ OF .

If LIK s separable, then x # 0 (point 2) and x; # 0 for all i (points 3
and 4).

If L|K is not separable, then in point 3 precisely [L : K(LP)] of the
elements xy, ..., T, are equal to 0. In point 4 the same holds for the elements
Ty T1yeees Ty



2 RESULTS ON FINITELY GENERATED DIFFERENTIAL MODULES QOL|OK

Let (L|K,v) be an extension of valued fields and let Op|Og be the induced
extension of valuation domains. The Theorems 4.5 and 4.7 in [C-K] seem to
indicate that the Op-module o, o, of Kéahler differentials is rather rarely
finitely generated. It is therefore worthwhile to investigate the implications
this property has on the structure of the extension (L|K,v).

THEOREM 2.1: Suppose that the differential module Qo, |0, of the exten-

sion Op|Ok of valuation domains is finitely generated and let p := char(Kwv).
Then

e in the case p = 0 the transcendence degree trdeg (Lv|Kv) is finite,
e in the case p # 0 the degree [Lv : Kv(LvP)] is finite.

Let ty,...,t, € O be elements such that either tyv, ..., t,,v is a transcen-
dence basis of Lv|Kv (p=0) or is a p-basis of Lv|Kv (p #0). Then

1. Qo0 = Opdty @ ... ® Opdty, if (vL : vK) =1 or (vL : vK) >
e(vLlvK),

2. QOL\OK == OL dt D OLdtl S...D OL dtm, where tOL = ML, Zf
(vL :vK) = e(vLjvK) > 1.

PROOF: For a separable residue field extension Lv|Kwv the sequence of
Lv-vector spaces

0_>ML/(M[2,+MKOL)%QOL\OK/MLQOL\OK i)QLU‘KU—)O (1)

is exact — see [Kun], Corollary 6.5. Consequently the dimension of €7,k is
finite, which implies that there exists a basis dii, ..., dt, of Qryke. In the
case p = 0 the elements ¢y, ..., ,, then form a transcendence basis of Lv|Kwv,

which proves the first assertion of the theorem.

In the case of an inseparable residue field extension Lv|Kv the sequence
of Lv-vector spaces

0— ML/(MIQ, + MlOL) - QOL|OK/MLQOL|OK i) QLv|Kv — 0, (2)

is exact, where M’ := My N Ok[O}], — see [Kun], Theorem 6.7. Again
this yields the existence of a basis diy, ..., dt,, of Qry ke, but since p # 0
the elements 1, ..., t,, this time form a p-basis of Lv|Kwv, which proves the

second assertion of the theorem.



The homomorphism ¢ in the sequences (1) and (2) is defined by
xdy + M Qo 0, — wvdyv. Therefore it is possible to lift the differen-
tials dt; to differentials dt; € Qo, |0k ; the family dty, ..., dt,, then is linearly
independent over Op.

In the case (vL : vK) = 1 the equation MOy = M}, holds, which implies
Mp/(M? + MygOp) =0 and My /(M? + M'Op) = 0 for p # 0. Consequently
the exact sequences (1) and (2) yield

Q0,05 = OLdty & ... & O dty,

by the assumption that {2, |0, be finitely generated and Nakayama’s lemma.

In the case (vL : vK) > e(vL|vK) the maximal ideal M}, is not finitely
generated, hence M? = M, holds, which implies My /(M?+ MyxOp) = 0 and
My /(M? + M'Opr) = 0 for p # 0. Then the same reasoning as above applies.
Altogether the assertion 1 of the theorem is proved.

Finally suppose (vL : vK) = ¢(vL|vK) > 1 holds. Then My = tOy, for
some t € O, which shows that My /(M?+ MxOp) and My /(M3 + M'Oy) for
p # 0 are generated by the respective residue class of . The homomorphism
¢ is defined by

T+ (MI% -+ MKOL) — dx + MLQOL\OK

and similarly in the inseparable case. Consequently the exact sequences (1)
and (2) yield that

dt + MLQOL|OK7 dtl + MLQOL|OK7 . ,dtm + MLQOL|OK

form a basis of Qo, 0, /M0, |0, Which again by Nakayama’s lemma im-
plies the assertion 2 of the theorem. O

Given Theorem 2.1 in order to understand the structure of Qo |0, it
is necessary to determine the annihilators Ann(ds), s € {t,t1,...,tn}. In
particular the number » among these annihilators equal to 0 determines a
decomposition of o, |0, into its torsion submodule and a free complement.
Such a decomposition exists in general for finitely generated modules over
valuation domains:

PROPOSITION 2.2: Let N be a finitely generated module over the valua-

tion domain O and let T be the submodule of torsion elements of N. Then
N =T®&F, where = O" for some r € Nj.

PROOF: Any finitely generated, torsion-free module N over O is free:
choose preimages by, ...,b. € N of a basis of the O/M-vector space N/M N,
where M is the maximal ideal of O. Then N = Ob; & ... & Ob,.
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In general the factor module N/T is torsion-free hence free, which implies
that the exact sequence 0 — T'— N — N/T — 0 splits. O

For differential modules o, 0, the rank r of the free component in
Proposition 2.2 can be determined. For a large class of extensions Oy |Ok it
is equal to 0:

PROPOSITION 2.3: For a separable, algebraic extension (L|K,v) of valued
fields the differential module Qo, 0, 1s a torsion module.

Proor: It suffices to show that all exact differentials dx are torsion ele-
ments. Let f € K[X] be the minimal polynomial of = over K. Then there
exists A € Ok \ 0 such that Af € Ok [X]. The separability of z over K yields
Af'(x) # 0. The equation

Af/(2) dz = d(\f(x)) = 0
therefore shows that dx is a torsion element. O
It remains to consider the case of an inseparable extension L|K.

PROPOSITION 2.4: Let (L|K,v) be a valued field extension of characteris-
tic p # 0 and suppose that the differential module Qo, |0, s finitely generated.
If Qo,10, =T @®F, F = O} is the decomposition of Qo, |0, according to
Proposition 2.2, then p" = [L : K(LP)].

PROOF: Localization with respect to Op, \ 0 yields
QL\OK =L QOLloK ®o, L =1 (T D OE) ®o, L =1 L.
Now Qo = Qk and by [Kun], Proposition 5.7 the differential module
QK is an L-vector space of dimension r, where p" = [L : K(L?)]. 0

Theorem 2.1 shows that the Oz-module o, |0, is isomorphic to a module
of the form

O/ ®...® 0L/, (3)

where [, are proper ideals of Op. The following result of Salce and Zanardo
shows, that the ideals I}, are uniquely determined by €20, |0,

THEOREM 2.5 ([F-S], Ch.V, Theorem 5.5): Let N be a finitely generated
module over the valuation domain O and suppose that

O0==UycU;c..cU:=NandO0=VoCcViC...CVp:=N

are chains of pure submodules of N such that the modules U; 11 /U; and Vi1 /V;
are generated by one element. Then £ = {' and there exists a permutation o €
Sy such that Viz1/Vi 2 Usgy41/Usqy for all i. In particular the annihilators
Ann (U;41/U;) up to their order are independent of the particular chain of
submodules.



COROLLARY 2.6: The annihilator ideals Ann(ds), s € {t,t1,...,tm},
appearing in Theorem 2.1 up to theiwr order do not dependent on the choice
of the elements t,t1,... t,,.

PROOF: Direct summands of a module are pure. Hence Theorem 2.1
gives a chain of pure submodules in Q, 0, as in Theorem 2.5. The annihi-
lator ideals of this chain are the ideals Ann (ds), s € {t,t1,...,t;m} O

3 RESULTS ON FINITELY PRESENTED DIFFERENTIAL MODULES QOL|OK

For an extension Op|Ok of valuation domains the differential module Qo, o,
is a finitely generated Op-module provided that Oy is an essentially finitely
generated Og-algebra. In this case one actually gets a much stronger result
that can simplify the computation of the annihilators of the differentials
appearing in Theorem 2.1.

PROPOSITION 3.1: Suppose that the extension Op|Ok of valuation do-
mains is essentially finitely generated. Then the differential module Qo, |0,
s a finitely presented Or-module.

Proor: The ring Oy, has the form Oy = A, for some prime ideal g of a
finitely generated Og-algebra A C Frac (Or). It suffices to show that €40,
is a finitely presented A-module. Every flat, finitely generated algebra over
a valuation ring is finitely presented — see [Nag-1], Theorem 3. Moreover for
modules over valuation domains flatness and being torsion-free are equiva-
lent. Thus there exists a presentation

0= (fi, .., fr) > S—=>A—=0,

where S := Og[X7, ..., X,,] is the polynomial ring in m indeterminates over
Og. The corresponding conormal sequence

(froeo s f) )/ (froeo s £)? = Q5105 ®5 A = Qa0 — 0

is exact. Since (g0, is a free S-module possessing the basis dX7,...,dX,,,
the tensor product g0, ®g A is a free A-module, thus proving the assertion.
(Il

Recall that a module N over a commutative ring R is called coherent, if
every finitely generated submodule of N is finitely presented. A commutative
ring R is coherent, if it is coherent as an R-module. Valuation domains are
coherent rings, since their finitely generated ideals are principal.



COROLLARY 3.2: For every w € Qo, |0, the annihilator Ann(w) is a
principal ideal of Oy,.

PRrROOF: Every finitely presented module over a coherent ring is coher-
ent — see [Gla], Theorem 2.3.2. Proposition 3.1 thus yields that Qo, 0, is
coherent. Consequently in the exact sequence

0 — Ann(w) - Op - Opw — 0

the module Opw is finitely presented, therefore Ann(w) is finitely generated
thus principal. a

As a consequence of this corollary and Theorem 2.1 a finitely presented
differential module o, |0, is isomorphic to an Or-module of the form

OL/(.I’l) D... @OL/(CL’K), L1y, Xy € OL\OE<
This is in fact a special case of a structure theorem by R. B. Warfield:

THEOREM 3.3 ([F-S], Ch. I, Theorem 7.9): Let N be a finitely presented
module over a valuation domain O and let ¢ € N be the minimal number of
generators of N. Then there exist elements x1,...,xy € O\ O* such that

N=0/(z1)®...80/(xy).
The ideals (x1), ..., (x¢) are uniquely determined by N up to their order.

REMARK: A principal ideal (z) of a valuation domain O with associated
valuation v : K — vK U oo is determined by the value vx. Moreover one
can assume that the ideals (z;) appearing in Theorem 3.3 form a descending
chain. Then the assignment

O-Modyg, — F(vL?°), N+ [N] := (vay, ..., vxy), (4)
where O-Mody, is the class of finitely presented O-modules and
FL™®) :={(y,...,n) : LeN,, €vKUo0,0 <y <...<v} (5

maps isomorpism classes bijectively to F(vL>?).

The invariants [N] of a finitely presented module are invariant under base
change to the henselization, which is of particular interest in the case of a
differential module:



THEOREM 3.4: Let Op|Ok be a unibranched extension of valuation do-
mains and let O% and O% be their respective henselizations. Then

~ h
Qonjon. = Qopjox @ox Ok

Consequently if
Qoo = Or/(x1) ® ... @ Op/(x),

then
Qonjon = Op/(x) @ ... ® O} /(x0).

PROOF: By [Nag-2|, Theorem 43.17 the henselization O as an Op-algebra
is isomorphic to the tensor product Or ®¢, O%, hence

Y a4 h
Qonjon. = Lo, 04, ohjon = Qojox @ox Of-
Since the extension O%|Of is flat, for € Oy, one has
O1/201, ®o, Ok =2 0 ®0,. O /201 @0, O% = O /zO"

which proves the second assertion of the theorem. O

COROLLARY 3.5: Let (L|K,v) be a finite extension of valued fields with
the properties: Lv|Kv is separable, Op|Ok is finite and (vL : vK) > 1.
Then Qo0 = Or/(x) with an x € Op such that ve = v(f'(t)), where
tOp = My, and f € K™[X] is the minimal polynomial of t over the maximal
unramified subextension K™ K" of L" K". (The unique extension of v to the
henselization L" is again denoted by v.)

In particular in the case char(Kv) =:p =20 orp{ (vL : vK) =: e one has
ve = (e — 1)vt.

PROOF: By assumption Lv = Kv(f) and the minimal polynomial g of
0 over Kv is separable. Let g € O%[X] be a monic polynomial with the
property deg(g) = deg(g) and gv = g. Then g is irreducible over K" and by
Hensel’s Lemma has a simple root § € O} with §v = 0. Consequently the
field extension K"(0)|K" is separable of degree [K"(0) : K"] = [Lv : Ku].
By Theorem 1.1 the degree of the extension L"|K" is given by

[L": K" = (vL : vK)[Lv : Kv],

hence [L" : K")] = (vL : vK) = e(vL|vK); in particular K™ = K"(6).
Since (vL : vK) = (vL" : vK") and e(vL|vK) = e(vLMvK"), for every
t € Or with tOp, = My, one gets Opn = Ogue[t], therefore

Q0,100 = O/ (f(1)),
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where f’ is the minimal polynomial of ¢ over K™ .
In the exact sequence

Q0w 10,0 @0gur O = Q010,00 = 0,050 — 0

by Proposition 6.8 in [Kun] Qoywlo,, = 0, hence Qo ,10,, = Qo
Theorem 3.4 now yields

nlOgur -

Q0L|0K = OL/(x)a vr = U(f,(t))‘
If p=0or p{e, then the extension L"|K™ and thus
f=X4a 1 X'+ .. .+ X +a

are separable. Since K is henselian the conjugates o(t), o : L" — K" a
K"-embedding of L" into the algebraic closure of K", all possess the same
value. Therefore v(a;) > (e—1)v(t) for all i. Since v(t) is the minimal positive
value of vL this implies

v(f'(t)) = min(v(e) + (e — Do(t),v(ia;t™) i € {1,...,e — 1})
= (e—1)v(t).

The ingredients for the proof of Theorem 1.2 are now available:
e Assertion 1 follows from [Kun|, Proposition 6.8.
e Assertion 2 is Corollary 3.5.
e Assertion 3 follows from point 1 of Theorem 2.1.
e Assertion 4 follows from point 2 of Theorem 2.1.

e The statement about the structure of the summands Oy, d¢; follows from
Corollary 3.2.

e The statement about the number of zero-elements among x, x4, ..., x,,
is a consequence of the Propositions 2.3 and 2.4.



REFERENCES

[C-K]

[C-K-R]

C-N]

[Dat]

[End]

[Kun]

[Nag-1]

[Nag-2]

[Thal]

S. D. Cutkosky, F.-V. Kuhlmann, Kdhler differentials of
extensions of wvaluation rings and deeply ramified fields,
arXiv:2306.04967v1 [math.AC] (2023).

S. D. Cutkosky, F.-V. Kuhlmann, A. Rzepka, Charac-
terizations of Galois extensions with independent defect,
arXiv:2305.10023v1 [math.AC] (2023).

S. D. Cutkosky, J. Novacoski, Fssentially finite generation of
valuation rings in terms of classical invariants, Mathematis-
che Nachrichten 294 (1) (2020).

R. Datta, Fssential finite generation of extensions of valua-
tion rings, Mathematische Nachrichten 296 (3) (2023).

O. Endler, Valuation Theory, Springer Verlag, Berlin-
Heidelberg-New York 1977.

L. Fuchs, L. Salce, Modules over Non-Noetherian Domains,
Mathematical Surveys and Monographs 84, American Math-
ematical Society 2001.

S. Glaz, Commutative coherent rings, Lecture Notes in Math.
1371, Berlin - Heidelberg - New York 1989.

F.-V. Kuhlmann, A. Rzepka, The valuation theory of deeply
ramified fields and its connection with defect extensions,
Transactions Amer. Math. Soc. 376 (2023), 2693-2738.

E. Kunz, Kdhler differentials, Advanced Lectures in Mathe-
matics, Vieweg, Braunschweig 1986.

M. Nagata, Finitely generated rings over a valuation ring, J.
Math. Kyoto Univ. 5 (1965), 163-169.

M. Nagata, Local Rings, Robert E. Krieger Publishing Com-
pany, Huntington, New York 1975.

V. Thatte, Ramification Theory for Artin-Schreier Exten-
sions of Valuation Rings, Journal of Algebra 456 (2016),
355-3809.

10



[Tha2] V. Thatte, Ramification Theory for Degree p Extensions
of Arbitrary Valuation Rings in Mized Characteristic (0,p),
Journal of Algebra 507 (2018), 225-248.

HAGEN KNAF

Faculty of Engineering, Applied Mathematics
RheinMain University of Applied Sciences
65428 Riisselsheim, Germany

E-Mail: Hagen.Knaf@hs-rm.de

11



