ON THE STRUCTURE OF FINITELY GENERATED DIFFERENTIAL MODULES OF EXTENSIONS OF VALUATION DOMAINS

Hagen Knaf

21. September 2023

1 INTRODUCTION

Motivated by the study of the valuation theory of deeply ramified fields [K-R] recently there has been some interest in describing the structure of the module $\Omega_{O_L|O_K}$ of Kähler differentials of an extension $O_L|O_K$ of valuation domains induced by a finite extension (L|K, v) of valued fields – see [C-K], [C-K-R]. The obstacles in doing so of course are the fact that the valuation domains in general are non-noetherian and that the extension $O_L|O_K$ needs not be essentially of finite type. Consequently the »classical« theory of differentials is not sufficient to describe the structure of $\Omega_{O_L|O_K}$ but must be, so it seems, complemented by rather delicate limit arguments as in [Tha1], [Tha2] and [C-K]. In this context the modest goal of the present article is to describe the structure of $\Omega_{O_L|O_K}$ assuming that it is a finitely generated respectively finitely presented O_L -module and to relate the result to the general theory of modules over valuation domains.

The O_L -module $\Omega_{O_L|O_K}$ is finitely generated, even finitely presented, for essentially finitely generated extensions $O_L|O_K$, which however is a rather restrictive property as the subsequent result shows. The notation used is the same as in the article [C-K]. In particular: $vK \subseteq vL$ denote the value groups and $Kv \subseteq Lv$ the residue fields of v; moreover $K^h \subseteq L^h$ denote the henselizations with respect to v.

THEOREM 1.1 ([C-N], Theorem 1.5, [Dat], Theorem 1.2): For a finite extension of valued fields (L|K, v) the following properties are equivalent:

- 1. The ring extension $O_L|O_K$ is essentially finitely generated.
- 2. $[L^h:K^h] = (vL:vK)[Lv:Kv]$ and $(vL:vK) = \epsilon(vL|vK)$, where

$$\epsilon(vL|vK) := |\{\delta \in vL^{\geq 0} : \forall \gamma \in vK^{>0} \ \delta < \gamma\}|.$$

Note that the condition $(vL : vK) = \epsilon(vL|vK)$ appearing in Theorem 1.1 implies that the maximal ideals M_K and M_L of O_K and O_L are principal ideals if (vL : vK) > 1. This fact will be used frequently in the sequel.

In the concrete case of a *finite* extension $O_L|O_K$, which is covered by Theorem 1.1, the main result of the present article is:

THEOREM 1.2: Let (L|K, v) be a finite extension of valued fields for which the ring extension $O_L|O_K$ is finite. Let $p := \operatorname{char}(Kv)$ and e := (vL : vK). A description of the structure of the differential module $\Omega_{O_L|O_K}$ is then given by the following list:

- 1. e = 1 and Lv|Kv is separable: $\Omega_{O_L|O_K} = 0$.
- 2. e > 1 and Lv|Kv is separable:

$$\Omega_{O_L|O_K} = O_L \, dt \cong O_L/(x),$$

where $M_L = tO_L$ and vx = v(f'(t)) for the minimal polynomial $f \in K^{\mathrm{ur}}[X]$ of t over the maximal unramified subextension $K^{\mathrm{ur}}|K^h$ of $L^h|K^h$.

In particular: vx = (e-1)vt if p = 0 or $p \nmid e$.

3. e = 1 and Lv|Kv is not separable:

$$\Omega_{O_L|O_K} = O_L \, dt_1 \oplus \ldots \oplus O_L \, dt_m,$$

where $t_1v, \ldots t_mv$ form a p-basis of Lv|Kv.

4. e > 1 and Lv|Kv is not separable:

$$\Omega_{O_L | O_K} = O_L \, dt \oplus O_L \, dt_1 \oplus \ldots \oplus O_L \, dt_m,$$

where the elements t, t_1, \ldots, t_m are chosen as in points 2 and 3.

The summands $O_L dt_i$ appearing in points 3 and 4 are isomorphic to $O_L/(x_i)$ for certain $x_i \in O_L \setminus O_L^{\times}$.

If L|K is separable, then $x \neq 0$ (point 2) and $x_i \neq 0$ for all *i* (points 3 and 4).

If L|K is not separable, then in point 3 precisely $[L : K(L^p)]$ of the elements x_1, \ldots, x_m are equal to 0. In point 4 the same holds for the elements x, x_1, \ldots, x_m .

2 Results on finitely generated differential modules $\Omega_{O_L|O_K}$

Let (L|K, v) be an extension of valued fields and let $O_L|O_K$ be the induced extension of valuation domains. The Theorems 4.5 and 4.7 in [C-K] seem to indicate that the O_L -module $\Omega_{O_L|O_K}$ of Kähler differentials is rather rarely finitely generated. It is therefore worthwhile to investigate the implications this property has on the structure of the extension (L|K, v).

THEOREM 2.1: Suppose that the differential module $\Omega_{O_L|O_K}$ of the extension $O_L|O_K$ of valuation domains is finitely generated and let p := char(Kv). Then

- in the case p = 0 the transcendence degree trdeg (Lv|Kv) is finite,
- in the case $p \neq 0$ the degree $[Lv : Kv(Lv^p)]$ is finite.

Let $t_1, \ldots, t_m \in O_L$ be elements such that either t_1v, \ldots, t_mv is a transcendence basis of $Lv|Kv \ (p=0)$ or is a p-basis of $Lv|Kv \ (p\neq 0)$. Then

- 1. $\Omega_{O_L|O_K} = O_L dt_1 \oplus \ldots \oplus O_L dt_m$ if (vL : vK) = 1 or $(vL : vK) > \epsilon(vL|vK)$,
- 2. $\Omega_{O_L|O_K} = O_L dt \oplus O_L dt_1 \oplus \ldots \oplus O_L dt_m$, where $tO_L = M_L$, if $(vL:vK) = \epsilon(vL|vK) > 1$.

PROOF: For a separable residue field extension Lv|Kv the sequence of Lv-vector spaces

$$0 \to M_L/(M_L^2 + M_K O_L) \to \Omega_{O_L|O_K}/M_L \Omega_{O_L|O_K} \xrightarrow{\psi} \Omega_{Lv|Kv} \to 0$$
(1)

is exact – see [Kun], Corollary 6.5. Consequently the dimension of $\Omega_{Lv|Kv}$ is finite, which implies that there exists a basis $d\bar{t}_1, \ldots, d\bar{t}_m$ of $\Omega_{Lv|Kv}$. In the case p = 0 the elements $\bar{t}_1, \ldots, \bar{t}_m$ then form a transcendence basis of Lv|Kv, which proves the first assertion of the theorem.

In the case of an inseparable residue field extension Lv|Kv the sequence of Lv-vector spaces

$$0 \to M_L/(M_L^2 + M'O_L) \to \Omega_{O_L|O_K}/M_L\Omega_{O_L|O_K} \xrightarrow{\psi} \Omega_{Lv|Kv} \to 0, \qquad (2)$$

is exact, where $M' := M_L \cap O_K[O_L^p]$, – see [Kun], Theorem 6.7. Again this yields the existence of a basis $d\bar{t}_1, \ldots, d\bar{t}_m$ of $\Omega_{Lv|Kv}$, but since $p \neq 0$ the elements $\bar{t}_1, \ldots, \bar{t}_m$ this time form a *p*-basis of Lv|Kv, which proves the second assertion of the theorem. The homomorphism ψ in the sequences (1) and (2) is defined by $x \, dy + M_L \Omega_{O_L|O_K} \mapsto xv \, dyv$. Therefore it is possible to lift the differentials $d\bar{t}_i$ to differentials $dt_i \in \Omega_{O_L|O_K}$; the family dt_1, \ldots, dt_m then is linearly independent over O_L .

In the case (vL : vK) = 1 the equation $M_K O_L = M_L$ holds, which implies $M_L/(M_L^2 + M_K O_L) = 0$ and $M_L/(M_L^2 + M'O_L) = 0$ for $p \neq 0$. Consequently the exact sequences (1) and (2) yield

$$\Omega_{O_L|O_K} = O_L \, dt_1 \oplus \ldots \oplus O_L \, dt_m$$

by the assumption that $\Omega_{O_L|O_K}$ be finitely generated and Nakayama's lemma.

In the case $(vL : vK) > \epsilon(vL|vK)$ the maximal ideal M_L is not finitely generated, hence $M_L^2 = M_L$ holds, which implies $M_L/(M_L^2 + M_KO_L) = 0$ and $M_L/(M_L^2 + M'O_L) = 0$ for $p \neq 0$. Then the same reasoning as above applies. Altogether the assertion 1 of the theorem is proved.

Finally suppose $(vL : vK) = \epsilon(vL|vK) > 1$ holds. Then $M_L = tO_L$ for some $t \in O_L$, which shows that $M_L/(M_L^2 + M_KO_L)$ and $M_L/(M_L^2 + M'O_L)$ for $p \neq 0$ are generated by the respective residue class of t. The homomorphism ϕ is defined by

$$x + (M_L^2 + M_K O_L) \mapsto dx + M_L \Omega_{O_L | O_K}$$

and similarly in the inseparable case. Consequently the exact sequences (1) and (2) yield that

$$dt + M_L \Omega_{O_L|O_K}, dt_1 + M_L \Omega_{O_L|O_K}, \dots, dt_m + M_L \Omega_{O_L|O_K}$$

form a basis of $\Omega_{O_L|O_K}/M_L\Omega_{O_L|O_K}$, which again by Nakayama's lemma implies the assertion 2 of the theorem.

Given Theorem 2.1 in order to understand the structure of $\Omega_{O_L|O_K}$ it is necessary to determine the annihilators $\operatorname{Ann}(ds)$, $s \in \{t, t_1, \ldots, t_m\}$. In particular the number r among these annihilators equal to 0 determines a decomposition of $\Omega_{O_L|O_K}$ into its torsion submodule and a free complement. Such a decomposition exists in general for finitely generated modules over valuation domains:

PROPOSITION 2.2: Let N be a finitely generated module over the valuation domain O and let T be the submodule of torsion elements of N. Then $N = T \oplus F$, where $F \cong O^r$ for some $r \in \mathbb{N}_0$.

PROOF: Any finitely generated, torsion-free module N over O is free: choose preimages $b_1, \ldots, b_r \in N$ of a basis of the O/M-vector space N/MN, where M is the maximal ideal of O. Then $N = Ob_1 \oplus \ldots \oplus Ob_r$. In general the factor module N/T is torsion-free hence free, which implies that the exact sequence $0 \to T \to N \to N/T \to 0$ splits. \Box

For differential modules $\Omega_{O_L|O_K}$ the rank r of the free component in Proposition 2.2 can be determined. For a large class of extensions $O_L|O_K$ it is equal to 0:

PROPOSITION 2.3: For a separable, algebraic extension (L|K, v) of valued fields the differential module $\Omega_{O_L|O_K}$ is a torsion module.

PROOF: It suffices to show that all exact differentials dx are torsion elements. Let $f \in K[X]$ be the minimal polynomial of x over K. Then there exists $\lambda \in O_K \setminus 0$ such that $\lambda f \in O_K[X]$. The separability of x over K yields $\lambda f'(x) \neq 0$. The equation

$$\lambda f'(x) \, dx = d(\lambda f(x)) = 0$$

therefore shows that dx is a torsion element.

It remains to consider the case of an inseparable extension L|K.

PROPOSITION 2.4: Let (L|K, v) be a valued field extension of characteristic $p \neq 0$ and suppose that the differential module $\Omega_{O_L|O_K}$ is finitely generated. If $\Omega_{O_L|O_K} = T \oplus F$, $F \cong O_L^r$ is the decomposition of $\Omega_{O_L|O_K}$ according to Proposition 2.2, then $p^r = [L : K(L^p)]$.

PROOF: Localization with respect to $O_L \setminus 0$ yields

$$\Omega_{L|O_K} \cong_L \Omega_{O_L|O_K} \otimes_{O_L} L \cong_L (T \oplus O_L^r) \otimes_{O_L} L \cong_L L^r.$$

Now $\Omega_{L|O_K} = \Omega_{L|K}$ and by [Kun], Proposition 5.7 the differential module $\Omega_{L|K}$ is an *L*-vector space of dimension *r*, where $p^r = [L: K(L^p)]$. \Box

Theorem 2.1 shows that the $O_L\text{-module}\;\Omega_{O_L|O_K}$ is isomorphic to a module of the form

$$O_L/I_1 \oplus \ldots \oplus O_L/I_\ell,$$
 (3)

where I_k are proper ideals of O_L . The following result of Salce and Zanardo shows, that the ideals I_k are uniquely determined by $\Omega_{O_L|O_K}$:

THEOREM 2.5 ([F-S], Ch.V, Theorem 5.5): Let N be a finitely generated module over the valuation domain O and suppose that

$$0 =: U_0 \subset U_1 \subset \ldots \subset U_\ell := N \text{ and } 0 =: V_0 \subset V_1 \subset \ldots \subset V_{\ell'} := N$$

are chains of pure submodules of N such that the modules U_{i+1}/U_i and V_{i+1}/V_i are generated by one element. Then $\ell = \ell'$ and there exists a permutation $\sigma \in S_\ell$ such that $V_{i+1}/V_i \cong U_{\sigma(i)+1}/U_{\sigma(i)}$ for all *i*. In particular the annihilators Ann (U_{i+1}/U_i) up to their order are independent of the particular chain of submodules.

COROLLARY 2.6: The annihilator ideals Ann (ds), $s \in \{t, t_1, \ldots, t_m\}$, appearing in Theorem 2.1 up to their order do not dependent on the choice of the elements t, t_1, \ldots, t_m .

PROOF: Direct summands of a module are pure. Hence Theorem 2.1 gives a chain of pure submodules in $\Omega_{O_L|O_K}$ as in Theorem 2.5. The annihilator ideals of this chain are the ideals $\operatorname{Ann}(ds), s \in \{t, t_1, \ldots, t_m\}$.

3 Results on finitely presented differential modules $\Omega_{O_L|O_K}$

For an extension $O_L|O_K$ of valuation domains the differential module $\Omega_{O_L|O_K}$ is a finitely generated O_L -module provided that O_L is an essentially finitely generated O_K -algebra. In this case one actually gets a much stronger result that can simplify the computation of the annihilators of the differentials appearing in Theorem 2.1.

PROPOSITION 3.1: Suppose that the extension $O_L|O_K$ of valuation domains is essentially finitely generated. Then the differential module $\Omega_{O_L|O_K}$ is a finitely presented O_L -module.

PROOF: The ring O_L has the form $O_L = A_q$ for some prime ideal q of a finitely generated O_K -algebra $A \subseteq \operatorname{Frac}(O_L)$. It suffices to show that $\Omega_{A|O_K}$ is a finitely presented A-module. Every flat, finitely generated algebra over a valuation ring is finitely presented – see [Nag-1], Theorem 3. Moreover for modules over valuation domains flatness and being torsion-free are equivalent. Thus there exists a presentation

$$0 \to (f_1, \ldots, f_r) \to S \to A \to 0,$$

where $S := O_K[X_1, \ldots, X_m]$ is the polynomial ring in *m* indeterminates over O_K . The corresponding conormal sequence

$$(f_1,\ldots,f_r)/(f_1,\ldots,f_r)^2 \to \Omega_{S|O_K} \otimes_S A \to \Omega_{A|O_K} \to 0$$

is exact. Since $\Omega_{S|O_K}$ is a free S-module possessing the basis dX_1, \ldots, dX_m , the tensor product $\Omega_{S|O_K} \otimes_S A$ is a free A-module, thus proving the assertion.

Recall that a module N over a commutative ring R is called coherent, if every finitely generated submodule of N is finitely presented. A commutative ring R is coherent, if it is coherent as an R-module. Valuation domains are coherent rings, since their finitely generated ideals are principal. COROLLARY 3.2: For every $\omega \in \Omega_{O_L|O_K}$ the annihilator $\operatorname{Ann}(\omega)$ is a principal ideal of O_L .

PROOF: Every finitely presented module over a coherent ring is coherent – see [Gla], Theorem 2.3.2. Proposition 3.1 thus yields that $\Omega_{O_L|O_K}$ is coherent. Consequently in the exact sequence

$$0 \to \operatorname{Ann}(\omega) \to O_L \to O_L \omega \to 0$$

the module $O_L \omega$ is finitely presented, therefore $\operatorname{Ann}(\omega)$ is finitely generated thus principal.

As a consequence of this corollary and Theorem 2.1 a finitely presented differential module $\Omega_{O_L|O_K}$ is isomorphic to an O_L -module of the form

$$O_L/(x_1) \oplus \ldots \oplus O_L/(x_\ell), \ x_1, \ldots, x_\ell \in O_L \setminus O_L^{\times}.$$

This is in fact a special case of a structure theorem by R. B. Warfield:

THEOREM 3.3 ([F-S], Ch. I, Theorem 7.9): Let N be a finitely presented module over a valuation domain O and let $\ell \in \mathbb{N}$ be the minimal number of generators of N. Then there exist elements $x_1, \ldots, x_\ell \in O \setminus O^{\times}$ such that

$$N \cong O/(x_1) \oplus \ldots \oplus O/(x_\ell).$$

The ideals $(x_1), \ldots, (x_\ell)$ are uniquely determined by N up to their order.

REMARK: A principal ideal (x) of a valuation domain O with associated valuation $v : K \to vK \cup \infty$ is determined by the value vx. Moreover one can assume that the ideals (x_i) appearing in Theorem 3.3 form a descending chain. Then the assignment

$$O\operatorname{-Mod}_{\mathrm{fp}} \to F(vL^{>0}), \ N \mapsto [N] := (vx_1, \dots, vx_\ell),$$
(4)

where O-Mod_{fp} is the class of finitely presented O-modules and

$$F(vL^{>0}) := \{(\gamma_1, \dots, \gamma_\ell) : \ell \in \mathbb{N}, \gamma_i \in vK \cup \infty, 0 < \gamma_1 \le \dots \le \gamma_\ell\}$$
(5)

maps isomorphism classes bijectively to $F(vL^{>0})$.

The invariants [N] of a finitely presented module are invariant under base change to the henselization, which is of particular interest in the case of a differential module: THEOREM 3.4: Let $O_L|O_K$ be a unibranched extension of valuation domains and let O_K^h and O_L^h be their respective henselizations. Then

$$\Omega_{O_L^h|O_K^h} \cong \Omega_{O_L|O_K} \otimes_{O_K} O_K^h$$

Consequently if

$$\Omega_{O_L|O_K} \cong O_L/(x_1) \oplus \ldots \oplus O_L/(x_\ell),$$

then

$$\Omega_{O_L^h|O_K^h} \cong O_L^h/(x_1) \oplus \ldots \oplus O_L^h/(x_\ell).$$

PROOF: By [Nag-2], Theorem 43.17 the henselization O_L^h as an O_L -algebra is isomorphic to the tensor product $O_L \otimes_{O_K} O_K^h$, hence

$$\Omega_{O_L^h|O_K^h} \cong \Omega_{O_L \otimes_{O_K} O_K^h|O_K^h} \cong \Omega_{O_L|O_K} \otimes_{O_K} O_K^h$$

Since the extension $O_K^h | O_K$ is flat, for $x \in O_L$ one has

$$O_L/xO_L \otimes_{O_K} O_K^h \cong O_L \otimes_{O_K} O_K^h/xO_L \otimes_{O_K} O_K^h \cong O_L^h/xO_L^h,$$

which proves the second assertion of the theorem.

COROLLARY 3.5: Let (L|K, v) be a finite extension of valued fields with the properties: Lv|Kv is separable, $O_L|O_K$ is finite and (vL : vK) > 1. Then $\Omega_{O_L|O_K} \cong O_L/(x)$ with an $x \in O_L$ such that vx = v(f'(t)), where $tO_L = M_L$ and $f \in K^{ur}[X]$ is the minimal polynomial of t over the maximal unramified subextension $K^{ur}|K^h$ of $L^h|K^h$. (The unique extension of v to the henselization L^h is again denoted by v.)

In particular in the case char(Kv) =: p = 0 or $p \nmid (vL : vK) =: e$ one has vx = (e-1)vt.

PROOF: By assumption $Lv = Kv(\overline{\theta})$ and the minimal polynomial \overline{g} of $\overline{\theta}$ over Kv is separable. Let $g \in O_K^h[X]$ be a monic polynomial with the property $\deg(g) = \deg(\overline{g})$ and $gv = \overline{g}$. Then g is irreducible over K^h and by Hensel's Lemma has a simple root $\theta \in O_L^h$ with $\theta v = \overline{\theta}$. Consequently the field extension $K^h(\theta)|K^h$ is separable of degree $[K^h(\theta) : K^h] = [Lv : Kv]$.

By Theorem 1.1 the degree of the extension $L^h|K^h$ is given by

$$[L^h:K^h] = (vL:vK)[Lv:Kv],$$

hence $[L^h: K^h(\theta)] = (vL: vK) = \epsilon(vL|vK)$; in particular $K^{ur} = K^h(\theta)$.

Since $(vL : vK) = (vL^h : vK^h)$ and $\epsilon(vL|vK) = \epsilon(vL^h|vK^h)$, for every $t \in O_L$ with $tO_L = M_L$ one gets $O_{L^h} = O_{K^{ur}}[t]$, therefore

$$\Omega_{O_{L^h}|O_{K^{\mathrm{ur}}}} \cong O_{L^h}/(f'(t)),$$

where f' is the minimal polynomial of t over K^{ur} .

In the exact sequence

$$\Omega_{O_{K^{\mathrm{ur}}}|O_{K^{h}}} \otimes_{O_{K^{\mathrm{ur}}}} O_{L^{h}} \to \Omega_{O_{L^{h}}|O_{K^{h}}} \to \Omega_{O_{L^{h}}|O_{K^{\mathrm{ur}}}} \to 0$$

by Proposition 6.8 in [Kun] $\Omega_{O_{K^{\mathrm{ur}}}|O_{K^{h}}} = 0$, hence $\Omega_{O_{L^{h}}|O_{K^{h}}} \cong \Omega_{O_{L^{h}}|O_{K^{\mathrm{ur}}}}$. Theorem 3.4 now yields

$$\Omega_{O_L|O_K} \cong O_L/(x), \ vx = v(f'(t)).$$

If p = 0 or $p \nmid e$, then the extension $L^h | K^{ur}$ and thus

$$f = X^e + a_{e-1}X^{e-1} + \ldots + a_1X + a_0$$

are separable. Since K^{ur} is henselian the conjugates $\sigma(t)$, $\sigma : L^h \to \widetilde{K^h}$ a K^{ur} -embedding of L^h into the algebraic closure of K^h , all possess the same value. Therefore $v(a_i) \ge (e-i)v(t)$ for all *i*. Since v(t) is the minimal positive value of vL this implies

$$v(f'(t)) = \min(v(e) + (e-1)v(t), v(ia_it^{i-1}) : i \in \{1, \dots, e-1\})$$

= $(e-1)v(t).$

The ingredients for the proof of Theorem 1.2 are now available:

- Assertion 1 follows from [Kun], Proposition 6.8.
- Assertion 2 is Corollary 3.5.
- Assertion 3 follows from point 1 of Theorem 2.1.
- Assertion 4 follows from point 2 of Theorem 2.1.
- The statement about the structure of the summands $O_L dt_i$ follows from Corollary 3.2.
- The statement about the number of zero-elements among x, x_1, \ldots, x_m is a consequence of the Propositions 2.3 and 2.4.

References

[C-K]S. D. Cutkosky, F.-V. Kuhlmann, Kähler differentials of extensions of valuation rings and deeply ramified fields, arXiv:2306.04967v1 [math.AC] (2023). [C-K-R] S. D. Cutkosky, F.-V. Kuhlmann, A. Rzepka, Characterizations of Galois extensions with independent defect, arXiv:2305.10023v1 [math.AC] (2023). [C-N]S. D. Cutkosky, J. Novacoski, Essentially finite generation of valuation rings in terms of classical invariants, Mathematische Nachrichten **294 (1)** (2020). [Dat] R. Datta, Essential finite generation of extensions of valuation rings, Mathematische Nachrichten **296** (3) (2023). [End] O. Endler, Valuation Theory, Springer Verlag, Berlin-Heidelberg-New York 1977. [F-S]L. Fuchs, L. Salce, Modules over Non-Noetherian Domains, Mathematical Surveys and Monographs 84, American Mathematical Society 2001. [Gla] S. Glaz, Commutative coherent rings, Lecture Notes in Math. 1371, Berlin - Heidelberg - New York 1989. [K-R] F.-V. Kuhlmann, A. Rzepka, The valuation theory of deeply ramified fields and its connection with defect extensions, Transactions Amer. Math. Soc. 376 (2023), 2693–2738. [Kun] E. Kunz, Kähler differentials, Advanced Lectures in Mathematics, Vieweg, Braunschweig 1986. [Nag-1] M. Nagata, Finitely generated rings over a valuation ring, J. Math. Kyoto Univ. 5 (1965), 163–169. [Nag-2] M. Nagata, Local Rings, Robert E. Krieger Publishing Company, Huntington, New York 1975. [Tha1] V. Thatte, Ramification Theory for Artin-Schreier Extensions of Valuation Rings, Journal of Algebra 456 (2016), 355-389.

[Tha2] V. Thatte, Ramification Theory for Degree p Extensions of Arbitrary Valuation Rings in Mixed Characteristic (0, p), Journal of Algebra **507** (2018), 225-248.

HAGEN KNAF Faculty of Engineering, Applied Mathematics RheinMain University of Applied Sciences 65428 Rüsselsheim, Germany E-Mail: Hagen.Knaf@hs-rm.de